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An experiment was carried out to determine whether the level of the speech fluency disorder can be

estimated by means of automatic acoustic measurements. These measures analyze, for example, the

amount of silence in a recording or the number of abrupt spectral changes in a speech signal. All

the measures were designed to take into account symptoms of stuttering. In the experiment, 118

audio recordings of read speech by Czech native speakers were employed. The results indicate that

the human-made rating of the speech fluency disorder in read speech can be predicted on the basis

of automatic measurements. The number of abrupt spectral changes in the speech segments turns

out to be the most appropriate measure to describe the overall speech performance. The results also

imply that there are measures with good results describing partial symptoms (especially fixed

postures without audible airflow). VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4863646]

PACS number(s): 43.70.Dn, 43.70.Kv [SSN] Pages: 1457–1468

I. INTRODUCTION

Stuttering is a chronic speech fluency disorder charac-

terized by “abnormally high frequency and/or duration of

stoppages in the forward flow of speech” (Guitar, 2006). The

symptoms mainly occur in speech: Repetitions (of sounds,

syllables, words, or phrases), prolonged sounds, interjec-

tions, revisions, incomplete phrases, and broken words

(Bloodstein and Bernstein Ratner, 2008). These symptoms

impair the natural fluency of speech production (Conture,

2001). There is also an element of disorder that influences

the psychological and social state of a person who stutters

(Kalinowski, 2003; Ezrati-Vinacour and Levin, 2004).

Developmental stuttering typically starts between 2 and

7 yr of age with a prevalence of about 5% in preschool

children (Yairi and Ambrose, 1999; Mansson, 2000). The

symptoms persist into adulthood in approximately 1% of

the population. The ratio between females and males is

estimated to be 1:3 for 2–10 yr olds, and the ratio does not

remain stable with age (1:4 for 11–20 yr olds, 1:2 between

21–49 yr, and 1:1.4 for the population over age 50) (Craig

and Tran, 2005; Bloodstein and Bernstein Ratner, 2008).

The diagnosis and evaluation of the severity of a speech

disorder are traditionally performed by clinical experts.

Several stuttering scales have been introduced, such as the

Lidcombe Behavioral Language of Stuttering (Teesson

et al., 2003) and the Stuttering Severity Instrument (Riley,

1972), but there has been a need for automatic and objective

methods. Such a method would be helpful in diagnosis, the

choice of treatment approach, and the evaluation of treat-

ment progress and results (Metz and Samar, 1983; Van

Borsel et al., 2003).

The application of acoustical analysis could provide an

objective and quantitative intrument to mark the presence of

stuttering symptoms and/or describe the severity, character-

istics, and progress of the disorder and its treatment (Kent

et al., 1999). Studies (Di Simony, 1974; Metz and Samar,

1983; Adams, 1987) have focused on the temporal character-

istics of stuttered speech, investigating, for example, vowel

duration and voiced stop consonant intervocalic intervals.

The rate of speech (manually measured) has been also recog-

nized as a helpful tool for the evaluation of stuttering

(Johnson, 1961; Ryan, 1992; de Andrade et al., 2003).

Methods based on digital signal processing may offer

insight into stuttered speech. A great effort has been devoted

to studying the behavior of formant frequencies, the funda-

mental frequency, and the voice onset time (VOT). The tran-

sition of the second formant frequency has been studied in

Yaruss and Conture (1993), formant frequency fluctuation

in Robb et al. (1998), fundamental frequency and fluent

VOT in Healey and Gutkin (1984), fluent VOT and phrase

duration in Healey and Ramig (1986), and fundamental

frequency, jitter, and shimmer in Hall and Yairi (1992).

Computer programs can be efficiently applied to the objec-

tive analysis of pathological speech. The computer system

multi-dimensional voice program developed by Kay

Elemetrics Corp. (Kay Elemetrics Corp., 2003), and the

freely available PRAAT (Boersma, 2002), are among these

programs and provide several measures for speech evalua-

tion. However, the disadvantage of these programs is mostly

the need for user control of the analysis. This can be avoided

by using methods that process the entire signal without user

control. An approach simply using temporal characteristics

to find repetition and prolongation can be seen in Howell

et al. (1986). Advanced digital signal processing methods

have been employed for identifying manually selected stut-

tered parts of speech: Mel frequency cepstral coefficients in

Ravikumar et al. (2009) and linear predictive cepstral
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coefficients in Hariharan et al. (2012). Hidden Markov mod-

els (HMM) have been utilized in Noth et al. (2000),

Wisniewski et al. (2007a), and Wisniewski et al. (2007b) to

reveal repeated or prolonged parts of disfluent speech. A

method does not have to look for symptoms of speech disor-

der: It could process the signal in another way. Such a

method could investigate the energy of the speech signal

(speech envelopes) (Kuniszyk-Jozkowiak, 1995, 1996) or

could utilize Kohonen networks for the detection of speech

nonfluency (Szczurowska et al., 2009).

Research on other speech disorders and in different

areas of acoustics could supply interesting results and ideas.

Maier et al. (2011) used automatic methods for evaluation of

reading disorder in children’s speech where the total reading

time is one of the most useful features. Articulation disorder

in children with a cleft lip or palate were investigated in

Maier et al. (2009b), and patients who have had their larynx

removed due to cancer and children with a cleft lip or palate

in Maier et al. (2009a). Study (Godino-Llorente and Gomez-

Vilda, 2004) has used short-term cepstral parameters to

identify vocal fold impairment due to cancer. Acoustical

methods have been applied to non-invasive biomarkers of

patients with Parkinson’s disease (Sapir et al., 2010; Rusz

et al., 2011). Cucchiarini et al. (2000) applied a continuous

speech recognizer to the quantitative assessment of second

language learners’ fluency. Nine automatic measurements

based on temporal features of speech, such as the rate of

speech, articulation rate, or the total duration of the pauses,

have been employed.

The aim of the present study is to investigate whether

the level of speech fluency disorder in audio recordings of

read speech can be estimated by means of automatic acoustic

measurements. Investigating recordings of read text could be

a step toward spontaneous speech, which is more common in

clinical practice, and clinical experts would appreciate a

method that could help with evaluation. The database of

recordings from Czech native speakers with different levels

of the speech fluency disorder and two different evaluation

scales used as expert rating are introduced in Sec. II. Four

automatic acoustic measurements are described in the same

section. The reliability of the evaluation and the results of a

comparison between four automatic measurements and the

expert ratings are given in Sec. III, along with an additional

feature, the total reading time for comparison with other

studies. Section IV provides a discussion of our main find-

ings. Finally, Sec. V concludes the article with a short

summary.

II. METHOD

The methodology of this study is divided into four

stages: (1) participants and speech data, (2) the rating of the

speech recordings, (3) algorithms of the automatic measure-

ments, and (4) statistics.

A. Participants and speech data

The speech signal database was created in the past few

years at the Department of Phoniatrics of the First Faculty of

Medicine at the Charles University and the General Faculty

Hospital in Prague. The database contains recordings of 118

Czech native speakers (28 women and 90 men) with differ-

ent ages and levels of speech fluency disorder. The age struc-

ture of the whole database is as follows: Mean age 18.1 yr

[6 standard deviation (SD), 9.9 yr], the youngest participant

was 8 yr old, the oldest was 50 yr old. Fifteen recordings

(5 women and 10 men) are utterances of speakers without

speech fluency disorder [mean age 27.37 yr [6SD, 7.4 yr)]

and speakers with speech fluency disorder were in age, mean

16.73 yr (6SD, 9.4 yr). All participants read the standard

text used by Czech speech therapists, the text is about 70

word-long, it is phonetically non-balanced, and it does not

include tongue twisters. The average length of a recording is

66.1 s (6SD, 33.3 s).

The utterances were recorded with a sampling frequency

of 44 kHz. The signals were down-sampled to 16 kHz for the

subsequent analysis.

B. The rating of the speech recordings

To verify the suitability of a measure, reliable expert

rating is necessary (Cordes and Ingham, 1994). Two differ-

ent evaluation scales were used in the experiment. The first

is the modified Kondas’s scale, which is a system used by

Czech speech therapists for rating stuttering (Lechta, 2004).

The scale consists of five stages (from 0 to 4): 0 is normal

healthy speech (without frequent signs of disfluency), 1 is

mild disfluency (up to 5% stuttered words), 2 is moderate

disfluency (6%–20% disfluent words), 3 is severe disfluency

(20%–60% disfluent words), and 4 is very severe disfluency

(more than 60% disfluent words). The evaluation was per-

formed by two professional speech pathologists using the

Kondas’s scale. They evaluated recordings independently,

and each participant got score according to her/his perform-

ance and the best knowledge of the evaluator. Then the judg-

ment of both therapists was merged for further evaluation. In

case their ratings differed (for example, if the first assigned

the level 2 and the second 3), the higher level was adopted.

The structure of speech fluency disorder according to the

modified Kondas’s scale (merged judgment of two thera-

pists) is as follows: The groups of 0–4 include 15, 24, 41, 31,

and seven recordings.

To have more insight and information about the extent

of speech disfluencies, the second set of expert ratings was

produced by means of the Lidcombe Behavioral Data

Language of Stuttering (LBDL) (Teesson et al., 2003),

which is a behaviorally based taxonomy of stuttering. The

LBDL was developed to be both valid and reliable. It can be

used to describe stuttering across all ages. The LBDL con-

siders seven descriptors of stuttering symptoms: Syllable

repetition (SR), incomplete syllable repetition (ISR), multi-

syllable unit repetition (MSUR), fixed posture with audible

airflow (FPWAA), fixed posture without audible airflow

(FPWOAA), superfluous verbal behaviors (SVB), and su-

perfluous nonverbal behavior (SNB). All the categories are

detectable in a speech signal except the descriptor SNB,

which should be looked for in video recordings. The

descriptor SNB is not used in these experiments. The

descriptors overall (all descriptors except SNB), repeated
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(SRþ ISRþMSUR), and fixed (FPWAAþFPWOAA) are

also considered in this paper.

One evaluator listened to the recordings and for each

one wrote down the number of all symptom occurrences

when evaluating by means of the LBDL. The final score was

computed as the number of occurrences divided by the num-

ber of all words in the recording.

The reasons why this taxonomy was adopted in the

experiment are: First, the results are valid and reliable when

the system is used by experienced judges (Teesson et al.,
2003). Second, the taxonomy is easy to use. Also, when

using the LBDL with all its categories, the measures that fit

the most for particular descriptors can be found. An example

of using the LBDL in a quite similar problem can be seen in

the research on stuttering symptoms in Parkinson’s disease

(Goberman et al., 2010).

C. Automatic measurements

This stage is dedicated to four automatic measurements

designed to measure the level of the speech fluency disorder.

Table I lists all the measures. For each measure, the table

describes how it works, which symptoms it covers or takes

into account, and which assumptions were made.

1. The average length of silence (ALS)

Subjects with stuttering have more silences and pauses

than do healthy subjects. Thus it can be assumed that the

higher level of fluency disorder results in higher amounts of

silence in the speech signal.

A voice activity detector (VAD) is employed to split

the signal into speech and silent parts. The VAD based on

the Mel frequency filter bank was used. The first step in the

procedure is the estimation of power spectra (computed by

Welch’s method) followed by application of the triangular

Mel-frequency filter bank. Then the decision about the

speech activity in each frequency band by means of an

adaptive threshold is made. The last step of computing

speech activity is the final decision about the speech activity

(speech/silence) in the whole frequency band.

The average length of the silent parts can be simply

calculated when knowing placement of speech/silence parts,

ALS ¼ 1

NSIL

XNSIL

i¼1

TSILENCE ið Þ; (1)

where TSILENCE(i) is the duration in seconds of the ith
segment of silence and NSIL is the number of segments of

silence, see Fig. 1, where in part (a), the speech signal and,

in (b), the detected voice activity are depicted. The final

value of the ALS is modified by summing up with 1 (to

avoid the situation when the ALS equals 0) and then using

the logarithm.

To make the difference between fluent and disfluent

speech more visible, an innovative procedure was developed.

Short speech parts, such as repetition, superfluous verbal

behavior, and parts of incorrectly pronounced words, could

be removed by this method and the amount of silence

increased in a speech signal with such disfluencies. The pro-

cedure uses successive removals of short segments of speech

and silence. First, the speech segments shorter than 125 ms

are removed (silent segments shorter than 125/2 ms are

removed at the same time), next, there follows 150 ms, and

this process continues up to the value 5000 ms. The proce-

dure is depicted in Figs. 1(b) and 1(c) for demonstration. In

this example, the ALS (without taking the logarithm and

adding 1) is approximately 0.2 s [in Fig. 1(b)], and after

removing intervals shorter than 150 ms, the ALS rises to 1 s

[Fig. 1(c)]. The results presented in the results section are for

the time limit values from 125 to 1500 ms.

2. The extent of speech fluency (ESF)

The speech rate has been found to be an important indi-

cator of speech fluency (Johnson, 1961; Ryan, 1992; de

Andrade et al., 2003), and there have been experiments to

measure the rate of speech automatically (Cucchiarini et al.,
2000). The measure ESF is very close to the speech rate.

Abrupt spectral changes (AC) correspond to phoneme boun-

daries or transitions from speech to silence (and vice versa)

in a speech signal. They can be captured by a detector of ab-

rupt changes in the spectrum.

The Bayesian autoregressive changepoint detector

(BACD) is employed to identify spectral changes in this

study, and all the remaining measures are based on its use.

The detector is based on the analytical solution of the

changepoint problem between two autoregressive models

(Ruanaidh and Fitzgerald, 1996) and assumes that a speech

signal can be represented by an autoregressive (AR) model

of a certain order. Then the identification of abrupt spectral

changes is accomplished by detecting changes in that AR

model. The algorithm of the sliding window is applied to the

signal (Cmejla and Sovka, 2004) or more in depth (Cmejla

et al., 2013). This window is shifted through the signal, and

the unknown changepoint is considered to be in the middle

of the window (between the right and left parts of the win-

dow). The probability that the change in the AR model lies

TABLE I. List of the measures used as indicators of speech fluency.

Measure Symptoms Description

The average length of silence (ALS) Overall performance, pauses Average duration of silent parts identified by voice activity detector

The extent of speech fluency (ESF) Overall performance Number of abrupt spectral changes

The average number of spectral changes in

short intervals (SCSI) Pauses Average number of abrupt spectral changes in short time windows

The number of spectral changes in speech

segments (NSI) Pauses, overall performance Number of abrupt spectral changes included in speech segments
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in the middle of the window is computed in each step. This

procedure continues until the end of the signal is reached

with one sample step. The result is a series of probabilities.

High values of these probabilities should refer to abrupt

spectral changepoints, see Fig. 2: The speech signal is in

Fig. 2(a) and its BACD output curve in Fig. 2(b). The higher

the probability is, the larger is the abrupt change. But in our

case, the size of the change does not play a key role [as it

does in articulation problems of patients with Parkinson’s

disease (Rusz et al., 2011)]. The placement and distance of

the maxima are more important for the analysis of disfluent

speech.

Because the BACD output curve includes both significant

and less significant abrupt changes, the following procedure is

needed. The output of the BACD is filtered by a low-pass

filter with the cutoff frequency at 20 Hz (to smooth the

BACD output curve). The local minima are calculated in the

smoothed output curve; thereafter the local maxima are found

in the appropriate segments (between two local minima).

Many of those local maxima do not correspond to significant

spectral changes (phoneme boundaries), and they should be

excluded. A threshold is utilized to separate these maxima

[Fig. 2(b)]. Then the significant abrupt changes are obtained

[Fig. 2(c)], their number is determined, and the ESF is calcu-

lated by the formula

ESF ¼

XNAC

i¼1

AC ið Þ

TSIGNAL

; (2)

where AC(i) is an abrupt spectral change, NAC is the number

of abrupt spectral changes, and TSIGNAL is the length of the

speech signal in seconds. For example, in the figure there are

27 abrupt changes and the duration of this part of signal is

3 s, so the ESF of this fluently pronounced speech is 9.

The analysis, carried out on the detector outputs from

different participants, showed that we are not able to use one

threshold for the entire database. Hence a method of adapt-

ive threshold extraction for each signal was used. The thresh-

old is determined as a fraction of the kth highest maxima.

Several algorithm settings were tested: From 1 to 9 for k and

from 0.1 to 0.3 for the multiplication constant, and their

results are shown in Sec. III in comparison to speech

specialist evaluation. The best setting (k¼ 4 and 0.15 for the

multiple) was established experimentally by comparing with

the expert rating. The BACD of a sixth order AR model with

FIG. 1. (Color online) Steps of the cal-

culation of the ALS. (a) Speech signal,

repetition of the Czech word “k k

kvitky” (flowers). (b) VAD detection.

(c) Modified VAD output after suc-

cessive removing speech segments

shorter than 150 ms and silences

shorter than 150/2 ms.

FIG. 2. (Color online) Identifying ab-

rupt spectral changes. (a) Speech signal,

Czech sentence “ozdoba sadu uscho-

vana byla v komore” (garden adornment

was kept in the pantry). (b) BACD

output, local minima, and candidates of

abrupt spectral changes. (c) Abrupt

spectral changes.
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a window length 60 ms was used in the whole experiment

(Cmejla et al., 2013; Bergl, 2010).

3. The average number of spectral changes in short
intervals (SCSI)

In Sec. II C 1, it was mentioned that disfluent speech

consists of many prolongations, frequent pauses, and broken

words. The SCSI tries to capture these phenomena by proc-

essing the BACD output in short windows. If the output of

the BACD is processed in short segments, the difference

in the number of abrupt changes could be significant for

segments with speech activity as opposed to segments with

silence, taking into account the comparison of disfluent

speech to healthy speech. For participants with disfluencies,

it is expected that more silence appears in stuttered than in

fluent speech (the average number of changes in the window

is smaller). The number varies and in many cases is zero.

Conversely, the number of changes for healthy speakers is

more stable and the average should be higher.

The procedure of analysis using the average number of

BACD changes in short interval as a parameter begins with

identification of significant abrupt spectral changes. It is

followed by the processing of the detector output in a short

window. The number of spectral changes is found in each

window, and the average number of abrupt spectral changes

in the windows is quantified. The logarithm is used for the

final value. An example of this calculation can be seen in

Fig. 3, where the value of the logarithm of the SCSI is 0.84

(it is a part of a disfluent speech signal with severe disflu-

ency) and the window length is 2 s.

The tested window lengths were 1, 2, and 4 s with half-

overlap and all used window lengths reached very similar

results. The studied BACD settings were as for the ESF. The

window length 2 s and all settings of BACD are presented in

Sec. III.

4. The number of spectral changes in speech intervals
(NSI)

This measure makes the same assumptions as the mea-

sure ESF. It uses the VAD in combination with the BACD in

addition to the ESF.

The beginning of the procedure is the same as in the

previous BACD algorithms up to the point of identifying the

relevant spectral changes at which point one then imple-

ments the following step: Applying the VAD and spectral

changes in speech segments are identified.

The number of spectral changes in the ith speech seg-

ment NACspeech
(i) is determined, and finally the number of spec-

tral changes in all speech segments is summed up and divided

by the length of the speech signal TSIGNAL in seconds. See

Fig. 4 for a short demonstration of the method. When Nspeech

is the number of speech segments, the measure NSI can be

written as follows:

NSI ¼ log10

XNspeech

i

NACspeech
ið Þ

TSIGNAL

: (3)

There is also an additional step to this procedure, as at

the measurement of the ALS, it is the successive removal of

short speech segments that increases the difference between

fluent and disfluent speech. The example in the figure shows

a short part of the speech signal “Podzim na starem belidle”

(autumn at the old bleachery) where the value of the NSI

would be 0.43. All tested settings of the BACD are shown in

Sec. III; the time limit for removing short speech and silence

segments is 1000 ms based on the ALS algorithm results.

D. Statistics

The ability to recognize levels of speech disfluency was

examined using the Pearson product-moment correlation, the

classification with the linear discriminant analysis (LDA),

and the statistical method analysis of variance (ANOVA)

with post hoc Bonferroni adjustment. First, all settings of

each algorithm are examined by means of correlations and

deviations with respect to the expert ratings. Second, the

ANOVA analysis is performed for one selected setting of

each of the four acoustic measures to find significant differ-

ences between fluency levels. Then the relationship between

the acoustic measures and all categories of the LBDL is

evaluated by the Pearson product-moment correlation. The

Kolmogorov–Smirnov test was used to examine the normal-

ity of the distribution of the data.

To demonstrate how the algorithms are able to separate

all subjects into disfluency levels, the LDA is used. The

FIG. 3. (Color online) Procedure for

calculating the average number of

BACD changes in a short interval. (a)

Speech signal, a part of the Czech sen-

tence “chomace stareho listi buh vi

kam” (bunch of old leaves God knows

where). (b) Output of Bayesian detec-

tor. (c) Processing by means of a win-

dow with marked number of abrupt

spectral changes.
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LDA (Harrington and Cassidy, 1999), a statistical technique,

takes the knowledge that an element from training data

set belongs to a certain group/level. On the basis of the

elements’ mean and standard deviation, the discriminant

function is determined for each group from training data set.

These discriminant functions could be then used for classifi-

cation of a new element. Because the number of participants

in the experiment is rather lower, especially in peripheral

levels 0 and 4, we decided to perform the leave-one-out

cross-validation instead of dividing the database into test and

validation group. When using this method, all elements of

the data set except one serve as the training set, and the one

element is used as the validation data. This is repeated for

each element of the data set, thus each element is used as the

validation data.

The deviation D is defined to assess the success of

classification,

D ¼
XN

i¼1

joi � ôijð Þ; (4)

where oi is merged evaluation of speech specialists for the

ith subject in the database, ôi represents the estimated level

for the same subject, the difference oi - ôi represents the clas-

sification error for one subject, and N is the number of sub-

ject in the database. When inspecting the results, we can

follow the theorem, the smaller deviation D, the better result

of classification achieved.

III. RESULTS

A. Reliability of the stuttering rating

All the read speech recordings were evaluated by two

evaluators using the modified Kondas’s scale and by one

evaluator using the LBDL. As appears from the Pearson

correlation and Cronbach’s alpha, the expert rating (the

Kondas’s scale) shows a very high relationship between both

therapists, a correlation of 0.91 (p< 0.001) and Cronbach’s

alpha 0.95. The evaluation made by the speech therapists

was also compared to the subjective evaluation made

by means of the LBDL (overall), and here the Pearson

correlation coefficient was 0.93 (p< 0.001) for the first

expert, 0.92 (p< 0.001) for the second, and for the merged

evaluation: 0.93 (p< 0.001). The logarithm of the LBDL

evaluation was used because the Kondas’s scale is rather

logarithmic (Cmejla et al., 2013).

The LBDL reports a high level of agreement in describ-

ing stuttering events and shows consistent results for intra-

and inter-judge agreement (Teesson et al., 2003). Thirty

recordings (20% of the 118 recordings) were assessed twice

to obtain the intra-judge agreement; the same 30 recordings

were assessed by the second evaluator to obtain the inter-

judge agreement, similar to Goberman et al. (2010). The

lowest correlation coefficients across all descriptors for intra-

judge agreement were 0.87 (p< 0.001) and 0.89 (p< 0.001),

the others exceeded 0.94 (p< 0.001). The results for inter-

judge agreement also seem to show good results (>0.76)

except for descriptor superfluous verbal behaviors (SVB).

The agreement for descriptor SVB was 0.32 (p¼ 0.08).

These events are important but not as much so as the

other events (repetition, prolongation, pauses), therefore we

decided to use this evaluation but the results related to the

descriptor SVB are viewed carefully.

The results of the intra- and inter-judge reliability in the

experiment achieved a high level of agreement, and we can

conclude that the evaluation is reliable and applicable for the

purpose of this experiment.

B. Automatic measurements for estimation of the
speech fluency disorder level

To establish whether automatic measurements can be

successfully used as an indicator of disfluency/fluency in

read speech, the following methods are used: The correlation

between the automatic measurements and the stuttering

rating, the classification using LDA with the leave-one-out

cross-validation, and the ANOVA analysis. First, we present

correlations and the deviation for all settings of four algo-

rithms to the speech specialist rating (the Kondas’s scale).

The scope of investigation is to find the most appropriate

setting of the algorithm for description of the level of the

speech fluency disorder. Second, the typical range of values

of each measure (according to the levels of speech fluency)

FIG. 4. (Color online) Calculation of

the number of spectral changes in

speech segments (NSI). (a) Speech sig-

nal. (b) Speech activity output with

successive removed speech and silence

parts (1, speech activity; 0, silence/

pause). (c) Abrupt changes (dashed

line) and ACs included in speech seg-

ments (thick line).
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are shown, followed by the results of the statistical analysis

ANOVA, and finally, the correlations between the measures

and the LBDL stuttering scale. For a little comparison with

other studies, the results of the feature the total reading time

RT (the duration of the recording in seconds) are also

displayed.

The correlation and results of classification represented

by the deviation D [Eq. (4)] can be viewed in Tables II–V

for algorithms ALS, ESF, SCSI, and NSI, respectively.

The measures reveal very good agreement with speech

specialist evaluation as can be seen in tables. The ALS mea-

sure based on speech and silence segments recognition

yielded the best correlation 0.64, the correlation rises with

increasing time limit (the scope of setting) achieving its top

at 1000 ms followed by a slow decline. The trend of classifi-

cation deviation is opposite; the deviation decreases with

rising time limit (the classification is more successful), one

of the local minima is reached at the time limit 1000 ms

D¼ 89, but the smallest deviation is 82 at the time limit

1500 ms (for details, see the Table II). Many of the BACD

based algorithms’ settings reached correlation �0.75, with

the highest correlation, �0.78, for the NSI algorithm, and

�0.77 for the ESF and the SCSI; that could be a good sign

of the algorithms’ robustness. Deviation of the classified

data from the expert rating are reduced in comparison to the

ALS, the smallest is 72, 75, and 64 for the ESF, SCSI, and

NSI, respectively. Thus the classification was more efficient.

The comparative measure RT (total reading time) correlates

with expert fluency rating with coefficient of 0.77 and the

deviation D¼ 64.

According to the results of correlations and classifica-

tion, the following settings were chosen for further detailed

analysis. Those are highlighted in bold in tables: The time

limit 1000 ms for the ALS; k¼ 4 (fourth highest maximum)

and multiplication constant 0.15 for the ESF; k¼ 6, multipli-

cation constant 0.15, and the window length 2 s for the

TABLE II. The Pearson correlation and results of classification using the

LDA (the deviation D from specialist evaluation) for all algorithm settings

of the ALS in comparison to the merged evaluation of both speech special-

ists. The time limit for successive removing of short speech and silence

segments is the subject of setting.

Settings (ms) Correlation (deviation D)

125 0.35 (172)

150 0.34 (153)

200 0.36 (146)

300 0.40 (123)

400 0.46 (124)

500 0.50 (121)

700 0.56 (109)

800 0.59 (105)

900 0.62 (94)

1000 0.64 (89)

1100 0.64 (91)

1200 0.62 (98)

1300 0.62 (102)

1400 0.62 (112)

1500 0.62 (82)

TABLE III. The Pearson correlation and results of classification using the

LDA (the deviation D from specialist evaluation) for all algorithm settings

of the ESF in comparison to the merged evaluation of both speech special-

ists. To set the algorithm, the kth highest maximum and multiplication

constant are used.

Multiplication constant, correlation (deviation D)

k 0.10 0.15 0.20 0.25 0.30

1 �0.75 (85) �0.73 (95) �0.67 (98) �0.61 (105) �0.53 (126)

2 �0.76 (80) �0.76 (82) �0.72 (96) �0.65 (102) �0.60 (105)

3 �0.75 (74) �0.76 (79) �0.72 (102) �0.66 (120) �0.61 (135)

4 �0.75 (79) 20.77 (74) �0.73 (95) �0.68 (112) �0.62 (127)

5 �0.74 (74) �0.76 (72) �0.74 (92) �0.69 (111) �0.65 (121)

6 �0.74 (87) �0.77 (74) �0.75 (87) �0.70 (112) �0.66 (125)

7 �0.72 (97) �0.77 (73) �0.75 (86) �0.71 (106) �0.67 (121)

8 �0.72 (93) �0.76 (75) �0.76 (82) �0.73 (106) �0.68 (121)

9 �0.72 (83) �0.76 (75) �0.76 (82) �0.74 (101) �0.70 (108)

TABLE IV. The Pearson correlation and results of classification using the

LDA (the deviation D from specialist evaluation) for all algorithm settings

of the SCSI in comparison to the merged evaluation of both speech special-

ists. To set the algorithm, the kth highest maximum and multiplication

constant are used, the window for processing is 2 s.

Multiplication constant, correlation (deviation D)

k 0.10 0.15 0.20 0.25 0.30

1 �0.75 (82) �0.73 (88) �0.68 (112) �0.63 (120) �0.58 (120)

2 �0.76 (79) �0.76 (80) �0.72 (93) �0.67 (99) �0.62 (99)

3 �0.75 (80) �0.75 (83) �0.72 (105) �0.67 (120) �0.62 (134)

4 �0.75 (76) �0.77 (77) �0.73 (101) �0.69 (119) �0.64 (123)

5 �0.74 (75) �0.77 (76) �0.74 (92) �0.70 (111) �0.66 (122)

6 �0.74 (87) 20.77 (75) �0.75 (92) �0.71 (110) �0.67 (123)

7 �0.72 (100) �0.76 (77) �0.75 (89) �0.71 (114) �0.67 (118)

8 �0.72 (97) �0.77 (75) �0.76 (89) �0.73 (106) �0.68 (118)

9 �0.71 (104) �0.77 (78) �0.76 (82) �0.73 (105) �0.69 (111)

TABLE V. The Pearson correlation and results of classification using the

LDA (the deviation D from specialist evaluation) for all algorithm settings

of the NSI in comparison to the merged evaluation of both speech special-

ists. To set the algorithm, the kth highest maximum and multiplication

constant are used, the time limit for successive removing of short speech

and silence segments is set to 1000 ms.

Multiplication constant, correlation (deviation D)

k 0.10 0.15 0.20 0.25 0.30

1 �0.77 (64) �0.77 (72) �0.74 (82) �0.70 (89) �0.66 (95)

2 �0.77 (65) �0.78 (68) �0.76 (69) �0.73 (82) �0.69 (93)

3 �0.76 (70) �0.77 (68) �0.76 (76) �0.73 (87) �0.69 (94)

4 �0.77 (72) �0.78 (70) �0.77 (70) �0.74 (80) �0.71 (93)

5 �0.76 (68) �0.77 (70) �0.77 (73) �0.74 (80) �0.72 (91)

6 �0.76 (69) 20.78 (64) �0.77 (75) �0.75 (78) �0.73 (93)

7 �0.76 (71) �0.77 (66) �0.77 (75) �0.75 (82) �0.73 (95)

8 �0.76 (70) �0.77 (66) �0.78 (74) �0.76 (76) �0.74 (87)

9 �0.76 (68) �0.77 (64) �0.78 (73) �0.77 (77) �0.74 (84)

J. Acoust. Soc. Am., Vol. 135, No. 3, March 2014 Lustyk et al.: Automatic measurements for disfluent speech 1463



SCSI; k¼ 6, multiplication constant 0.15, and time limit for

removal of short speech and silence segments 1000 ms.

Table VI shows the typical range of the algorithms’

values (for selected settings), the mean value �x and the

standard deviation SD of the measures according to the level

of the speech fluency scale. The results of the ANOVA anal-

ysis are attached at the bottom part of the table. It can be

seen that the measures ALS and RT increase with the level

of the speech fluency disorder. On the other hand, the meas-

ures ESF, SCSI, and NSI decrease with the growing level of

the disorder.

The best results in the ANOVA analysis with the post
hoc Bonferroni adjustment were achieved by the NSI algo-

rithm. It is able to find significant differences (p< 0.001)

between levels 1 vs 2 vs 3 vs 4 (all levels except 0 vs 1). The

measures ESF and SCSI recognized differences (p< 0.001)

between the mild and moderate levels of disfluency (1 vs 2),

and between moderate and severe disfluency (2 vs 3). Also,

the ALS measures found significant differences between

levels 2 vs 3 vs 4 (p< 0.001). The comparative measure

RT identified significant differences among the moderate,

severe, and very severe levels of disfluency (2 vs 3 vs 4)

with p< 0.001, and between mild and moderate disfluency

(1 vs 2) with p< 0.05. No measure found a statistically

significant difference between the normal healthy level of

speech and mild disfluency (0 vs 1).

Figures 5 and 6 depict the output values of two charac-

teristics in comparison to the LBDL evaluation to show the

range of values and dependency of the characteristics on

the level of the speech fluency disorder. Figure 5 includes

the values of the ALS characteristic and the overall LBDL

descriptor (the measures increases with the level of the disor-

der, the correlation coefficient is 0.68). Figure 6 is for the

NSI characteristic in comparison to the FPWOAA (pauses)

characteristic (the measure decreases with the level of

the speech fluency disorder, the correlation coefficient is

�0.82).

Table VII gives detailed results for the Pearson product-

moment correlation for selected settings of described

measures in comparison to all categories of the LBDL. The

algorithms achieved the best results for overall grade (sum-

mary descriptor), fixed postures (summary descriptor for

prolongations and pauses), and the FPWOAA descriptor

(fixed postures with- out audible airflow, i.e., pauses). The

magnitude of correlation coefficients exceeded 0.70 in some

cases: The highest were for the measure NSI versus

FPWOAA (0.84), fixed (0.85), and overall (0.82) descriptors.

The comparative measure RT achieved correlation equiva-

lent to those introduced, 0.68, 0.75, 0.74, and 0.86 for cate-

gories FPWOAA, repeated, fixed, and overall, respectively.

Higher correlation coefficients were also obtained for

summary descriptor repeated values for some automatic

measurements: About 0.65, for the measures ESF, SCSI, and

NSI. The consensus between automatic measurements and

individual repeated characteristic (SR, ISR, and MSUR) is

rather moderate. The smallest agreement between automatic

measures and individual characteristic of the LBDL is when

considering the category SVB.

To summarize these partial results: The automatic meas-

urements are able to indicate with a very good agreement the

characteristics overall, fixed, and FPWOAA (the measure

TABLE VI. The mean �x and standard deviation SD of fluency measures and statistical significance by means of the ANOVA analysis with comparison

between levels by the post hoc Bonferroni adjustment.

ALS ESF SCSI NSI RT

�x SD �x SD �x SD �x SD �x SD

Normal healthy speech (0) 0.19 0.06 7.46 1.14 1.23 0.08 0.87 0.06 34.8 8.0

Mild disfluency (1) 0.21 0.05 6.60 1.34 1.17 0.08 0.81 0.09 43.9 11.2

Moderate disfluency (2) 0.26 0.10 5.09 1.22 1.06 0.09 0.67 0.12 58.2 14.2

Severe disfluency (3) 0.38 0.11 3.79 0.80 0.95 0.09 0.51 0.13 92.0 25.7

Very severe disfluency (4) 0.60 0.26 3.32 0.41 0.90 0.04 0.28 0.22 140.0 40.3

Comparison between the levels

ANOVA F(4, 117) 27.97* 42.84* 43.33* 48.89* 60.08*

0 vs 1 NS NS NS NS NS

1 vs 2 NS p< 0.001 p< 0.001 p< 0.001 p< 0.05

2 vs 3 p< 0.001 p< 0.001 p< 0.001 p< 0.001 p< 0.001

3 vs 4 p< 0.001 NS NS p< 0.001 p< 0.001

NS¼ not significant; *p< 0.001

FIG. 5. (Color online) The comparison of the ALS to the subjective rating

(overall score). The measure increases with the level of the speech fluency

disorder.
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NSI demonstrates the best results, the other measures based

on the BACD also show high correlations, and the results of

the ALS measure could be considered as good).

An interesting issue would be the cross-correlation

between all measures, which are given in Table VIII. It is

obvious that some of the automatic measures are highly

correlated with each other, but there are exceptions. The

characteristics ESF, SCSI, and NSI (all based on the BACD)

are cross-correlated with coefficients >0.88. Some of the

cross-correlation coefficients exceed 0.9. There is also a

stronger relationship between the measure ALS (based on

the VAD) and the BACD-based measure NSI (0.85). The

measures ESF and SCSI report correlation with the ALS

about 0.60. We can consider that there might be a possibility

of combining several measures into one with better results in

the case of smaller correlations between them.

A small experiment was carried out with a combination

of all measures (ALS, ESF, SCSI, and NSI). The procedure

was very simple. First, normalization of the measured values

between 0 and 1 was done, then the normalized values were

summed up, and these values were compared to the fluency

rating. Simply combining the measures this way achieved a

Pearson correlation coefficient of 0.82 with the overall char-

acteristic (LBDL) and 0.80 with the speech therapists using

the Kondas’s scale.

IV. DISCUSSION

The study presents four automatic and objective meas-

ures applied to the analysis of audio recordings of stutterers.

The measures are based on the voice activity and detection

of abrupt spectral changes. The main goal is to find out

whether these automatic measurements are able to estimate

the level of the speech fluency disorder in read speech.

The expert ratings are very important when comparing

automatic measurements to subjective assessments. To have

more information about the extent of the speech fluency dis-

order, two different evaluation scales were applied: The first

is the modified Kondas’s scale (Lechta, 2004) and the second

is the LBDL taxonomy (Teesson et al., 2003). All 118 audio

recordings of read speech were evaluated by two experi-

enced phoniatric experts using the Kondas’s scale. The

Pearson correlation coefficient and Cronbach’s alpha showed

a very high relationship between both speech therapists. The

second subjective evaluation was made by one evaluator

who assessed all recordings by means of the LBDL taxon-

omy. The evaluation of 30 recordings for the second time

and by another judge was used for intra- and inter-judge reli-

ability. The same procedure was used in Goberman et al.
(2010). The Pearson correlation coefficient showed a strong

agreement between the original and the repeated evaluation

using the LBDL, which is consistent with Teesson et al.
(2003) and Goberman et al. (2010), where very high intra-

judge agreement was achieved. When we consult the inter-

judge agreement, the lowest correlation (0.32) was found for

superfluous verbal behaviors; the other categories of the

LBDL report significant positive correlations. Because of the

low correlation of the characteristic superfluous verbal

behaviors, the results dealing with this characteristic are

viewed carefully. When comparing the individual or merged

evaluations by experts (Kondas’s scale) and the descriptor

overall of the LBDL, the conclusion can be adopted that

these two evaluations report very strong relationships (the

Pearson correlations for the individual experts and the

merged evaluation with the LBDL surpasses 0.9), these

results of assessment suggests that the expert ratings are reli-

able and useful for the purposes of this experiment.

Our main findings dealing with automatic measurements

of audio recordings for the evaluation of speech disfluency

can be expressed as follows. First, the measures are able to

FIG. 6. (Color online) The comparison of the NSI to the subjective rating

(the FPWOAA characteristic). The measure decreases with the level of the

speech fluency disorder.

TABLE VII. The Pearson correlation coefficients and the levels of signifi-

cance (in parentheses when p> 0.001) for one selected setting of each mea-

sure in comparison to the LBDL descriptors and the merged evaluation of

speech pathologists.

Measure

Descriptor ALS ESF SCSI NSI RT

SR 0.38 �0.49 �0.48 �0.48 0.54

ISR 0.44 �0.51 �0.54 �0.52 0.65

MSUR 0.28 �0.54 �0.57 �0.50 0.60

FPWAA 0.25 �0.46 �0.48 �0.38 0.49

FPWOAA 0.73 �0.67 �0.72 �0.84 0.68

SVB 0.28 �0.31 �0.32 �0.29 0.60

Repeated 0.49 �0.63 �0.65 �0.63 0.75

Fixed 0.72 �0.73 �0.78 �0.85 0.74

Overall 0.68 �0.76 �0.80 �0.82 0.86

Specialists (merged) 0.64 �0.77 �0.77 �0.78 0.77

TABLE VIII. Correlations among all automatic speech measures.

Measure

Measure ESF SCSI NSI RT

ALS �0.58 �0.61 �0.85 0.69

ESF 0.99 0.88 �0.77

SCSI 0.90 �0.80

NSI �0.81
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indicate the overall level of the speech fluency disorder (at

least in read speech). This finding is supported by the results

where three of four measures have magnitudes of the corre-

lation coefficient with two experienced speech pathologists

higher than 0.77 and with the LBDL evaluation overall score

exceeding 0.76 (the highest 0.82). The comparative measure

total reading time achieved very similar correlation (0.77 for

speech experts); it surpasses introduced algorithms when

looking at the overall LBDL score (correlation of 0.86). The

correlation are supported by results of classification using

the linear discriminant analysis with the leave-one-out cross-

validation when the selected setting of the NSI algorithm

classified 61 subjects (52%) into the correct level of the

Kondas’s scale, 50 subjects (42%) with the classification

error 1 (the estimated level by algorithm differs by one level

from the subjective evaluation), and seven participants (6%)

with classification error 2; the total deviation from the

speech therapists evaluation is 64. For comparison, the total

reading time classified 59 subjects correctly (50%), 54 sub-

jects with the classification error 1 (46%), and five subjects

(4%) with the classification error 2 (the total deviation from

subjective evaluation is 64). Both measures show very simi-

lar results. The algorithms ALS, SCSI, NSI, and also the

comparative measure total reading time tend to assign rather

lower levels of the speech disorder than the speech thera-

pists, the ESF algorithm does the opposite. Assessment of

group differences confirms that the measure NSI is able to

find statistically significant differences (p< 0.001) between

the groups mild and moderate, moderate and severe, and

severe and very severe. The measures ALS, ESF, and SCSI

can separate one group less. In comparison, the total reading

time can differentiate levels moderate, severe, very severe

(p< 0.001), and mild and moderate (p< 0.05). A major

problem is distinguishing between normal fluent speech and

mild disfluencies: No measure is able to recognize a statisti-

cally significant difference here (the similar phenomenon

can be observed in classification). This is probably caused

by the definition of the levels of the modified Kondas’s

scale, where the level 0 (normal healthy speech—without

frequent signs of disfluency) and the level 1 (mild disfluency,

up to 5% disfluent words) are very close. These two groups

often overlap because normal fluent speakers usually exhibit

some signs of disfluencies (Johnson, 1961; Yairi and Clifton,

1972; Goberman et al., 2010), and it is difficult to recognize

the difference (Onslow et al., 1992).

Second, some measures are able to describe individual

or summary characteristics of the LBDL. The best results

can be found for the fixed postures without audible airflow:

Three measures achieved a Pearson product-moment correla-

tion higher than 0.7 in magnitude (the highest was 0.84 for

the measure NSI). This finding suggests that a large part of

the fluency evaluation in read speech may lie in the pauses,

which is in line with Cucchiarini et al. (2000). Also Noth

et al. (2000) found pauses very important for automatic eval-

uation of stuttered speech. This finding led us to examine the

cross-correlations between all characteristics of the LBDL

and a strong relationship between overall and fixed postures

without audible airflow was found (Pearson correlation of

0.81), which means that pauses constitute a large part of the

subjective evaluation of read speech at least in this case.

Thus the measures that obtained a good agreement with the

fixed postures without audible airflow have a strong relation

with the overall subjective evaluation based on the LBDL.

On the contrary, the total reading time has balanced results

for all individual categories and manages to achieve a very

good results for the overall score. The results for the other

individual categories of LBDL do not reach those for pauses.

The total reading time was found distinctive for evalua-

tion of disfluencies in read speech (Maier et al., 2011). This

measure was added to the experiment to have a comparison

to other possibility of how to measure stuttering severity. It

turned out to be a very good instrument for the evaluation

even though it is very simple. The results are comparable

and in some cases better than those of introduced algorithms,

and it could be possible to replace the algorithms with the

total reading time. But we would like to use these algorithms

for evaluation of spontaneous speech where the utterances

are mostly limited by time and the total time of a recording

will not be as influential as in recordings of read speech.

Because of the basic method used for the larger part of

the measures (the Bayesian abrupt spectral changes detec-

tor), it is appropriate to investigate the relationships between

these measures, and a strong relationship can be expected as

in Cucchiarini et al. (2000). Examining these results, we can

see that all the measures based on the BACD are strongly

correlated (some of the coefficients exceed 0.9). In case of

lesser correlation, there exists a high probability that a com-

bined measure created from less correlated measures will be

more successful. A small experiment was carried out to see

whether this is so by a simple combination (summing up the

normalized values of measures), and a correlation coefficient

of 0.8 with speech pathologists and 0.82 with the overall

characteristic was achieved; this is higher than that for any

single measure. A suitable combination and selection of

measures could be a future focus of research.

A possible limitation of the algorithms is that they are

able to describe fixed postures without audible airflow with

good agreement and the other individual characteristics of

the subjective evaluation, such as syllable and incomplete

syllable repetitions or prolongations, to a limited extent.

The results of this study for these symptoms do not reach the

results of Noth et al. (2000), Wisniewski et al. (2007a) or

Wisniewski et al. (2007b), but on the other hand, we are not

aware of other studies concentrating on automatically meas-

ured temporal speech characteristics in stuttered speech that

do not use hidden Markov models. The database could be

considered a weak point of the present study, and especially

its gender imbalance and its distribution of participants

across the levels of the disorder. There were only a few par-

ticipants at the very severe level, and most participants were

located at the mild, moderate, or severe levels. However, the

database reflects the situation in common practice (Yairi and

Ambrose, 1999; Bloodstein and Bernstein Ratner, 2008).

An advantage of our methods could be the possibility to

exchange one instrument for another. In other words, it pro-

vides the opportunity to apply other reliable abrupt spectral

changes detectors or voice activity detectors. The BACD

(Cmejla et al., 2013) applied in this study was tested using

1466 J. Acoust. Soc. Am., Vol. 135, No. 3, March 2014 Lustyk et al.: Automatic measurements for disfluent speech



synthetic and real speech signals (Bergl and Cmejla, 2007)

or for stuttered speech (Bergl, 2010) in comparison to other

divergence metrics with very good results. Algorithms, from

simpler ones such as spectral or cepstral distance to more

complex ones, such as general likelihood ratio (Appel and

Brandt, 1983) and Kullback–Leiber divergence, could be

employed. A great advantage of BACD- and VAD-based

measures could be that they are language independent, and

there is no need for a training database as in the case of

systems based on hidden Markov models. They could be

considered for use in experiments with second language

learning as in Cucchiarini et al. (2000, 2002) and Maier

et al. (2009c). Another VAD was also tested, one based on

parameters (Atal and Rabiner, 1976) in cooperation with the

support vector machine making the decision about speech vs

silence. When this VAD was applied, very similar results

were obtained.

V. CONCLUSION

An experiment was carried out to determine whether the

level of the speech fluency disorder can be objectively esti-

mated by means of automatic acoustic measurements of read

speech. On the basis of the results, the following conclusions

can be drawn. First, automatic measurements based on the

detection of abrupt spectral changes using the Bayesian

detector, and also voice activity detection, are able to indi-

cate the overall level of the speech fluency disorder in read

speech. Second, some measures can describe individual

symptoms of stuttering—the best results were obtained for

fixed postures without audible airflow (pauses in speech). An

advantage of all the measures presented is that there is no

external intervention, the measures are fully automatic and

the methods can be replaced with other reliable algorithms.

Future research could focus on the analysis of spontaneous

speech by means of the measures introduced.
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