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An assessment of vocal impairment is presented for separating healthy people from persons with

early untreated Parkinson’s disease (PD). This study’s main purpose was to (a) determine whether

voice and speech disorder are present from early stages of PD before starting dopaminergic phar-

macotherapy, (b) ascertain the specific characteristics of the PD-related vocal impairment, (c) iden-

tify PD-related acoustic signatures for the major part of traditional clinically used measurement

methods with respect to their automatic assessment, and (d) design new automatic measurement

methods of articulation. The varied speech data were collected from 46 Czech native speakers, 23

with PD. Subsequently, 19 representative measurements were pre-selected, and Wald sequential

analysis was then applied to assess the efficiency of each measure and the extent of vocal impair-

ment of each subject. It was found that measurement of the fundamental frequency variations

applied to two selected tasks was the best method for separating healthy from PD subjects. On the

basis of objective acoustic measures, statistical decision-making theory, and validation from prac-

ticing speech therapists, it has been demonstrated that 78% of early untreated PD subjects indicate

some form of vocal impairment. The speech defects thus uncovered differ individually in various

characteristics including phonation, articulation, and prosody.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3514381]

PACS number(s): 43.70.Dn [MAH] Pages: 350–367

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative

disorder characterized by the progressive loss of dopaminer-

gic neurons in the substantia nigra.1 PD is associated with

dopamine deficiency and other affections of the brain neuro-

mediator systems and accounts for a variety of motor and

non-motor deficits.

PD is the second most common neurodegenerative dis-

order after Alzheimer’s disease,2 affecting over 1 million

people in North America alone.3 Previous studies suggest

that PD usually affects people after the age of 50 yr; only

approximately 10% of patients report symptoms before the

age of 40 yr.4 Moreover, PD is estimated to affect 1.6% of

persons over the age of 65 yr.5 Age is also the single most

important factor for PD,with genetic predisposition second.3

As a result, the statistics for the number of affected persons

are expected to increase in proportion with the overall aging

of the worldwide population as a whole.6

In addition to the most ostensible motor symptoms such

as resting tremor, bradykinesia, muscular rigidity, and pos-

tural instability, many patients with PD develop non-motor

deficits such as disorders of mood, behavior, and cognition

and a distinctive alteration of speech characterized as hypo-

kinetic dysarthria.7,8

Previous studies report that approximately 70%–90% of

patients with PD show some form of vocal impairment,9,10

and this deficiency may also be one of the earliest indicators

of the disease.11,12 Medical treatment, including neuro-phar-

macological and neurosurgical methods, alleviates certain

symptoms, but there is no causal cure now available, and early

diagnosis of the disease has a vital role in improving the

patients’ live.13,14 Research has shown that medical therapies

alone are not as effective for treating speech symptoms as they

are for motor functions,15 and the effect of medical treatment

on speech production tends to be individual.16–18 Furthermore,

only 3%–4% of PD patients receive speech therapy.19 Behav-

ioral speech therapy, including intensive voice treatment,

appears to be the most effective type of speech intervention in

the early and moderate stage of PD at present.15,20 However,

the requisite physical visit to the clinic for treatment is difficult

and burdensome for many PD patients,21 and the reduced abil-

ity to communicate is considered to be one of the most diffi-

cult aspects of the disease.15

Acoustical voice analyses and measurement methods

might provide useful biomarkers for the diagnosis of PD in

the early stage of the disease,22 for possible remote monitor-

ing of patients,23 but above all, for providing important feed-

back in voice treatment for clinicians or patients themselves.

a)Author to whom correspondence should be addressed. Electronic mail:
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For adult subjects, methods enabling the assessment of the

speech impairment progress and the performance of the

acoustic feedback tests can be essential for stimulating moti-

vation and willingness for speech therapy. Acoustic meas-

urements can also improve the individual treatment16 and

thus partially alleviate the inconvenience and cost of physi-

cal visits.24 Moreover, voice measurement is non-invasive,

cheap, and simple to administer.

The ability to speak can be subdivided into several

dimensions, including respiration, phonation, articulation,

and prosody.25 The most salient features of PD are related to

phonatory impairment, with the articulation being the second

most affected speech subsystem,10,26,27 although patients

with PD can manifest abnormalities related to all of the

dimension of speech, including monopitch, monoloudness,

imprecise articulation, variability of speech rate, reduced

stress, hoarseness, speech disfluencies, inappropriate silence,

and others.25,28 There are many voice and speech tests that

have been devised to assess the extent of these symptoms

including vocal recordings of sustained phonations, rapid syl-

lable repetitions, and variable reading of sentences or freely

spoken monologs. The speech signals are then commonly an-

alyzed using several traditional measurement methods, which

include sound pressure level, fundamental frequency, formant

frequencies, speech rate, rhythm, and others.28 A number of

previous studies have used these methods to separate PD suf-

ferers from a healthy control (HC) group, indicating that

these standards could be useful measures in assessing the

extent of vocal impairment, note, for example, Refs. 29–31.

In reality, however, the reliability and robustness of

sound recording and measurement methods are impeded by

several confounding issues including variables of physical

condition and personal characteristics of the subject, such as,

for example, gender and age. Thus the measurement methods

performed on various vocal recordings should be chosen with

an eye, as much as possible, to these confusing and in many

cases even counteractive effects. Another relevant factor in

determining the extent of PD vocal impairment is the depend-

ence on the stage of the disease.29 Although there are many

studies using traditional measures performed on several vocal

tasks for assessment of PD voice and speech disorders, there

are no studies that can efficiently characterize the extent of

vocal impairment and the suitability of these measures at the

onset of PD, when the progression of symptoms of PD speech

is not affected by medication.

Several speech recording and measurement methods

may be needed to perform a reliable feedback test for the

assessment of vocal impairment. For this reason, we intro-

duce a brief PD-related characterization of voice and speech

disorders, explaining the choice of traditionally used acous-

tic measures, and subsequently design specific measurement

methods with a view toward their automatic assessment.

There are many tests performed on simple sustained vowels

for efficiently characterizing PD-specific dysphonia, includ-

ing the traditional measures of fundamental frequency, var-

iants of jitter and shimmer, and noise-to-harmonics (NHR)

ratios. While articulation is the second most affected speech

subsystem, there is a lack of available measures for its sim-

ple and efficient assessment. Therefore, we supplemented

the traditional measures with new measures of articulation

performed on rapid steady syllable repetition, which is the

standard vocal test used to evaluate the articulatory skills.

Although statistically significant relationships between

the extent of vocal impairment and measurement methods

have been found in most of the traditional measures, statisti-

cal significance alone is not sufficient to determine the suit-

ability of measurement methods for assessment of vocal

impairment. Recently, many further innovative studies have

appeared making use of acoustic measurement methods for

voice disorder detection on the basis of machine learning

tools—see, for example, Refs. 32–34. Consider the practical

limitations of effort and cost-outcome associated with

obtaining and verifying each of the methods, which are often

dependent on a specific and unavailable speech sample, what

is most needed is a reliable classifier that can determine the

optimal set for classification from a varied number of inde-

pendent available methods and speech samples.

The Wald task is a method from non-Bayesian statistical

decision-making theory,35 and it is given preference here

because of its capability to separately assess each measure

confronting the problem of making a decision in classifying

subjects as PD, HC, or “not sure” in case of an indecisive sit-

uation. This latter case occurs when the rated observation

does not provide enough information for a safe decision

about assignment to the correct group. For complete assess-

ment of vocal impairment, it is better to decide only in spe-

cific items where the rated observation clearly matches

speech performance of the PD or HC group. With such a

classification method, it is then possible to combine the user-

selected traditional and novel measures. Nonetheless, there

are still a number of measurements that can measure very

similar aspects of a speech signal.

In order to gain an optimal amount of information for

effective classification, in the present study we will first find

and remove redundant and statistically insignificant measure-

ments. Subsequently, the subset of available measurements

will be used for the classifier based on the Wald task. On the

basis of the classifier, we can not only discover the suitability

of each measure for separating PD patients from HC but also

the extent of vocal impairment in early untreated PD patients.

The organization of this paper is as follows. In the sec-

tion “Methods,” we describe the speech data and participants,

introduce a brief review of classical acoustical PD speech

analyses, detail the methods of speech measurements, and

explain the statistics, pre-selection stage, and classification

used in this study. In the section “Results,” we present the

results obtained. The section “Conclusion” contains a sum-

mary of our findings and provides a conclusion of the results

for future work.

II. METHODS

The methodology of this study is broken down into eight

stages: (a) the recruited participants; (b) the speech data; (c) a

brief characterization of the PD speech; (d) calculation of tradi-

tional used clinical acoustic measures; (e) calculation of new

non-standard acoustic measures; (f) the pre-selection of fea-

tures and statistics; (g) the application of Wald’s classifier to
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pre-selected features; and (h) overall calculation of results and

their validation by a speech therapist.

A. Participants

A grand total of 46 Czech native speakers were studied.

Twenty-three individuals (19 men and 4 women) were diag-

nosed with an early stage of idiopathic PD [mean age, 61.74 yr

[6standard deviation (SD), 12.60 yr]; duration of PD, 30.22

months (6SD, 22.21 months), Hoehn & Yahr stage 1–2, Uni-

fied Parkinson’s Disease Rating Scale (UPDRS) III score

17.52 (6SD, 7.26)]. None of these PD subjects received symp-

tomatic pharmacotherapy or speech treatment; all PD patients

were examined in the drug-naive state, before the symptomatic

treatment was started. In addition, 23 neurologically healthy

speakers matched for age served as a control, including

16 men and 7 women [mean age, 58.08 yr (6SD, 12.91 yr)].

See Table I for subject details.

The Hoehn & Yahr scale is a commonly used system for

describing the progression of symptoms of PD.36 The scale

comprises stages 1 through 5, where 1, unilateral involve-

ment only usually with minimal or no functional disability;

2, bilateral or midline involvement without impairment of

balance; 3, bilateral disease: mild to moderate disability with

impaired postural reflexes, physically independent; 4, severely

disabling disease, still able to walk or stand unassisted; and

5, confinement to bed or wheelchair unless aided.

The UPDRS part III score represents the motor rating

known as UPDRS III, scaled from 0 to 108, with 0 represent-

ing a symptom-free state and 108 severe motor impairment.37

The UPDRS III score encompasses areas such as tremor, ri-

gidity, facial expression, speech, and others. Speech is ranked

from 0 to 4, with 0 representing no signs of speech impair-

ment and 4, complete unintelligibility.

B. Speech data and recording

The speech data were recorded in a sound-treated booth

using an external condenser microphone placed at approxi-

mately 15 cm from the mouth and coupled to a Panasonic

NV-GS 180 video camera. The voice signals were recorded

directly to the computer, sampled at 48 kHz with 16-bit reso-

lution; the purpose behind the use of video camera was the

clinical examination of faciokinesia in PD patients, though

no video material was used in the present study. The use of

sound-treated booth (or at least a quiet room with a low ambi-

ent noise level) is recommended for its influence on assess-

ment of intensity, articulation rate, and pause characteristics

measurements, all of which are based on the energy of the

signal and thus can be greatly influenced by noisy acoustic

environments.

The vocal tasks used in this study ranged from producing

isolated vowels to reading short sentences and producing a

short, spontaneous monolog about a given subject. The dura-

tion of all of the vocal tasks used in this study was approxi-

mately 5 min [mean, 313.04 s (6SD, 36.40 s)]. See Table II

for details of the vocal tasks.

The recording of each participant was obtained during a

single session with a speech therapist. Recording began with

a set of practice items to familiarize the speakers with

instruction for the tasks and the recording procedure. No

time limits were imposed during the recordings. Each partic-

ipant was tested individually and received the production

tasks in a fixed order. All participants were asked to repeat

their production of an attempt that resulted in the erroneous

production of any task, and they could repeat their produc-

tion at any time if they or the speech therapist were not fully

satisfied with their initial performance, though erroneous

TABLE I. List of participants with sex, age, and duration of disease prior to

recording. Entries labeled “n/a” are for HC, for which duration of disease is

not applicable.

Subject code Sex Age (yr)

Duration of

PD prior to recording

(months)

PD02 M 73 36

PD03 M 82 24

PD04 M 60 48

PD05 M 57 12

PD06 M 58 16

PD08 F 62 15

PD09 M 56 33

PD10 M 79 33

PD11 M 71 82

PD12 M 61 58

PD13 F 52 70

PD14 M 68 12

PD15 M 60 17

PD16 M 54 9

PD17 M 34 39

PD18 M 76 22

PD19 M 61 36

PD20 M 56 48

PD21 M 72 35

PD22 F 52 60

PD23 F 37 13

PD25 M 83 6

PD26 M 56 6

HC02 M 74 n/a

HC03 M 61 n/a

HC04 M 40 n/a

HC05 M 64 n/a

HC06 M 67 n/a

HC07 F 42 n/a

HC08 F 61 n/a

HC09 F 53 n/a

HC10 F 43 n/a

HC11 F 48 n/a

HC12 F 45 n/a

HC13 F 55 n/a

HC14 M 69 n/a

HC15 M 71 n/a

HC17 M 77 n/a

HC18 M 60 n/a

HC19 M 68 n/a

HC20 M 50 n/a

HC21 M 80 n/a

HC22 M 73 n/a

HC23 M 52 n/a

HC24 M 36 n/a

HC25 M 47 n/a
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productions occurred rarely. The final vocal task productions

were retained for acoustic analyses.

C. PD speech measurements

As discussed in the Introduction, abnormalities of the PD

speech can be associated with several dimensions. Because it

would far exceed the scope of this paper to discuss all speech

measures, we briefly characterize only the traditional speech

acoustics measures in PD related to this study, including pho-

nation, articulation, and prosody. It is important to note that a

deficit in respiration and quality of phonation may affect,

among other things, the speaker’s ability to produce normal

phrasing and intensity. In addition, a decrease in respiratory

pressure may cause deficits in phonation and articulation, i.e.,

decreased loudness and decreased ability to after loudness.38

Phonation is the vibration of the vocal folds to create

sound.39 In examining phonation in PD speakers, the most

traditional measurements are performed during sustained

vowel phonation and include measurement of F0 (the funda-

mental frequency or pitch of vocal oscillations), jitter (extent

of variation of voice range), shimmer (the extent of variation

of expiratory flow), and NHR ratios (the amplitude of noise

relative to tonal components in the speech).40 The other pho-

natory measure that has commonly been studied in PD is

voice onset time (VOT), defined as the duration of time from

articulatory release of a stop consonant to the onset of voic-

ing for the following vowel.41 VOT can be categorized as a

phonatory measure because its changes in PD are generally

attributed to disruptions of phonation.42 Previous research

has revealed PD-related dysphonia symptoms in all phona-

tory measures, including a higher mean value for F0 and

increased variation of F0 in sustained vowel prolongation,

and deficits in producing normal VOT.29,42 It has been pro-

posed that rigidity of laryngeal musculature causes a reduc-

tion in the opening of the vocal fold for PD patients in

comparison to HC.43

Articulation is the modification of the position and

shape of the speech organs (e.g., tongue) in the creation of

sound.39 In examining articulation in participants with PD,

previous studies have reported that stop consonants were

imprecise and were produced as fricatives.43 This finding

suggests that the articulatory deficits may have been partially

the result of inadequate tongue elevation and constriction for

stops and fricatives.44 The most common method of evaluat-

ing articulatory skills is that of the diadochokinetic (DDK)

task. Typically, the DDK task measures the subject’s ability

to repeat a consonant–vowel (C-V) combination with bila-

bial, alveolar, and velar places of articulation, quickly, at a

constant level and a rhythmic manner. Subjects are asked to

repeat a combination of the three-syllable item, for example,

/pa/-/ta/-/ka/, as fast and long as possible.45 A number of

patients have demonstrated defects in the ability to make

rapid articulator movements for DDK tasks.46 Other meas-

urements found differences in vocal tract resonances (i.e.,

formants), indicating increased variability of the first and

second formant (F1 and F2, respectively) frequency. The

centralization of these vowel formant frequencies is well

captured by the vowel space area, and it can be a metric of

tongue movement.47 A few studies have reported smaller

areas of vowel space for speakers with PD, but these differ-

ences were not significant.47,48 Articulation measures also

include measurement of the F2 slope (or F2 transition) from

syllable repetition, representing the rate of tongue movement

from a consonant into a vowel. The results found that F2

transition rates in PD patients were lower compared to HC.42

Prosody is the variation in loudness, pitch, and timing

accompanying natural speech.39 Prosodic measures are usually

determined from running speech and include measurement of

F0, intensity (relative loudness of speech), articulation rate,

pause characteristics, and rhythm. A decreasing pitch range in

PD has been noted during the reading task,7,49 and various

changes in speech rate and pause characteristics have also

been found in people with PD in comparison to HC.30,42,43

Prosodic intensity changes have also been examined, when PD

patients produced significantly smaller intensity variation com-

pared to normal speakers during the reading of a standard pas-

sage.49 Overall, patients with PD demonstrate production

defects in all of these measurements, including reduced fre-

quency and intensity variations, and differences in speech rate

and pause characteristics in reading tasks.

D. Traditional measurement methods

The present section of our study involves a selection of

the major part of traditional clinically used measurement

methods for PD-related voice disorders assessment.28 These

measurement methods are chosen and designed with attention

paid to automatic feature extraction and to individual subject

TABLE II. List of the vocal tasks.

Task code Speech data

[TASK 1] Sustained phonation of /i/ at a comfortable pitch and loudness

as constant and long as possible, at least 5 s. [mean, 21.56 s

(6SD, 7.98 s)]. This task was performed on one breath.

[TASK 2] Rapid steady /pa/-/ta/-/ka/ syllables repetition as constant and

long as possible, repeated at least 5 times [mean number of

/pa/-/ta/-/ka/ 6.83 (6SD, 1.62)]. This task was performed

on one breath.

[TASK 3] Approximately 5-s sustained vowels of /a/, /i/, /u/ at a com-

fortable pitch and loudness [mean, 5.78 s (6SD, 0.57 s)].

The vowels were performed on one breath.

[TASK 4] Reading the same standard phonetically non-balanced text of

136 word [mean, 57.52 s (6SD, 8.59 s)].

[TASK 5] Monolog, at least approximately 90 s [mean, 109.96 s (6SD,

29.37 s), mean words, 232.50 (6SD, 86.24)]. The partici-

pants were generally instructed to speak about what they

did current day or last week, their interests, their job, or

their family.

[TASK 6] Reading the same text containing 8 variable sentences of 71

words with varied stress patterns on 10 indicated words

[mean, 39.78 s (6SD, 6.09 s].

[TASK 7] Reading 10 sentences according specific emotions in a com-

fortable voice in response to an emotionally neutral sen-

tence including excitement, sadness, confusion, fear,

boredom, anger, bitterness, disappointment, wonder, and

enjoyment [mean, 39.76 s (6SD, 6.11 s)].

[TASK 8] Rhythmically read text containing 8 rhymes of 34 words fol-

lowing the example set by the examinator [mean, 24.22 s

(6SD, 4.21 s)].

J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011 Rusz et al.: Acoustic analysis of Parkinson’s disease 353

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



differences—see the first part of Table III for a list of the

measures used as features in this part of the study.

1. The fundamental frequency

Standard methods include measures of the F0 mean, F0

range, and F0 SD. Although significant differences have been

found between absolute and range values of F0 in PD patients

compared to HC,7,29 we do not use these as a measure, since

they are affected by individual differences such as gender. In

particular, the extent of F0 variation is related to the individ-

ual average voice pitch. Subjects with naturally high-pitched

voices (traditionally women) will have much larger vibrato

and microtremor than persons with lower-pitched voices

(usually men),50 thus causing a significant problem when

these variations are measured on an absolute frequency scale

in hertz. Observations suggest that the SD of the F0-distribu-

tion is approximately the same for men and women if it is

expressed in semitones (logarithmic tonal scale). Specifically,

a doubling of frequency, that is, 100–200 Hz or 200–400 Hz

is represented by an equal semitone interval.50 The observa-

tions also suggest that a logarithmic tonal scale will work bet-

ter in capturing pitch variation due to speech impairment.51

The fundamental frequency variation (F0 SD) measure-

ments were determined using several vocal tasks. First, for

demonstrating the defects in phonation, we measured F0 SD

on sustained vowel phonation [TASK 1]. In this measure, a

higher value of F0 SD represents a dysphonic symptom of

impaired control of stationary voice pitch. As we discussed

earlier, people with PD often exhibit symptoms such as

reduced melody variations during speech. Therefore, we

performed F0 SD measurements using traditional voice

TABLE III. Overview of measurement methods used as features applied to acoustic signals recorded from each subject.

Feature Determined from Speech subsystem Description

1. Traditional

F0 SD [TASK 1] Phonation Variations of fundamental frequency, vibration rate of vocal folds.

[TASK 4–7] Prosody

Jitter:local [TASK 1] Phonation Average absolute difference between consecutive periods, divided by the average period.

Jitter:RAP [TASK 1] Phonation Relative average perturbation, the average absolute difference between a period and the average

of it and its two neighbors, divided by the average period.

Jitter:PPQ5 [TASK 1] Phonation Five-point period perturbation quotient, the average absolute difference between a period and the

average of it and its four closest neighbors, divided by the average period.

Jitter:DDP [TASK 1] Phonation Average absolute difference between consecutive differences between consecutive periods,

divided by the average period.

Shimmer:local [TASK 1] Phonation Average absolute difference between the amplitudes of consecutive periods, divided by the

average amplitude.

Shimmer:APQ3 [TASK 1] Phonation Three-point amplitude perturbation quotient, the average absolute difference between the

amplitude of a period and the average of the amplitudes of its neighbors, divided by the

average amplitude.

Shimmer:APQ5 [TASK 1] Phonation Five-point amplitude perturbation quotient, the average absolute difference between the

amplitude of a period and the average of the amplitudes of it and its four closest neighbors, di-

vided by the average amplitude.

Shimmer:APQ11 [TASK 1] Phonation Eleven-point amplitude perturbation quotient, the average absolute difference between the

amplitude of a period and the average of the amplitudes of it and its ten closest neighbors,

divided by the average amplitude.

Shimmer:DDA [TASK 1] Phonation Average absolute difference between consecutive differences between the amplitudes of

consecutive period.

NHR [TASK 1] Phonation Noise-to-harmonics ratio, the amplitude of noise relative to tonal components.

HNR [TASK 1] Phonation Harmonics-to-noise ratio, the amplitude of tonal relative to noise components.

Percent pause time [TASK 4,5] Prosody The percent change from the unedited sample length to the edited sample length.

Articulation rate [TASK 4] Prosody The number of syllables produced per second, after removing silence period exceeding 60 ms.

No. pauses [TASK 4,5] Prosody The number of all pauses compared to total time duration, after removing silence period not last-

ing more than 60 ms.

Intensity SD [TASK 4–6] Prosody Variations of average squared amplitude within a predefined time segment (“energy”) after

removing silence period exceeding 60 ms.

DDK rate [TASK 2] Articulation The number of /pa/-/ta/-/ka/ syllable vocalizations per second.

DDK regularity [TASK 2] Articulation The degree of /pa/-/ta/-/ka/ syllable vocalizations rate variations in the period.

VOT None Phonation Duration of time from articulatory release of a stop consonant to the onset of voicing for the fol-

lowing vowel.

Vowel area [TASK 3] Articulation Quantitative measure which involves plotting the three corner vowels in F1/F2 plane.

Rhythm [TASK 8] Prosody Measurement of ability to reproduce perceived rhythm through DTW.

2. Non-standard

RIRV [TASK 2] Articulation Relative intensity range variation, the variations of energy.

RRIS [TASK 2] Articulation Robust relative intensity slope, the robust linear regression of energy.

SDCV [TASK 2] Articulation Spectral distance change variation, the variations of spectral distance changes in signal spectrum.

RFPC [TASK 2] Articulation Robust formant periodicity correlation, the first autocorrelation coefficient of F2 contour.
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recordings, such as reading a text [TASK 4] and monolog

[TASK 5]. Reduced melody variations in speech can also be

related to the lowered ability of stress pronouncement and

emotional intonation imitation and perception.52 For this rea-

son, we created two modified voice recordings. The vocal

task of stress patterns [TASK 6] was designed to measure the

subject’s ability to produce unnatural increasing stress on la-

beled words. This ability of stress pronouncement can be then

well captured by F0 SD measurements. The other newly set

up vocal task [TASK 7] consists of 10 successive sentences

pronounced with variable emotional context. The goal of this

task is to evaluate how adults with PD express a particular

emotion through prosodic features of their voice, in compari-

son with HC. The participants made the various intonations

on the basis of the specific emotions, which should greatly

improve variations on the final pitch.

For obtaining the F0 sequence, we used the application of

the automatic algorithm of direct-time domain fundamental

frequency estimation (DFE) and voiced/unvoiced (V/UV) clas-

sification of the speech signal.53 The DFE algorithm consists

of spectral shaping, detection of significant extremes based on

adaptive thresholding, and actual frequency estimation under

several truth criteria. These criteria are used to select the

voiced part and eliminate estimation errors such as frequency

halving and doubling. The first criterion is related to the level

of the signal. No frequency estimations are performed for lev-

els of signal lower than the threshold Eth. The actual level of

energy is evaluated by an envelope detector; this criterion was

set to approximately 0.5% level of the signal, and it was used

as a noise gate. The second criterion is the expected frequency

range of F0, with no frequency accepted outside of the specific

range, which was set at 60–400 Hz. The third criterion is the

M-order majority, whereby more than a one-half of M consec-

utive detected frequencies must lie in the same frequency band

of chosen width. If the majority criterion M is satisfied, the

actual signal is evaluated as voiced. Here, the majority crite-

rion was set at five. As the last criterion, five-point median fil-

tering was applied to the obtained F0 sequence to deal with

incorrectly captured pitch periods outliers that may occur as a

consequence of pitch doubling or pitch halving. The obtained

pitch sequence was subsequently converted to the logarithmic

semitone scale and its SD calculated. An optimal sampling fre-

quency for DFE algorithm is 44 100 Hz—see Ref. 53 for more

algorithm details. Among other things, this algorithm was

applied to show that reliable automatic assessment of the F0 is

possible. There is also the possibility of using novel robust

pitch trackers,54,55 that provide better F0 evaluation results.

Almost the same results can be obtained using the soft-

ware PRAAT with the standard autocorrelation based proce-

dure,56 which was also used for validation of the obtained

results. In comparison with DFE algorithm, though, the dis-

advantage of PRAAT lies in its need for checking the correct

set up of the frequency range and other pitch settings as a

consequence of pitch doubling and halving.

2. Variants of jitter and shimmer and NHR ratios

The most popular measurements of voice functions are

the perturbation measures jitter and shimmer and their var-

iants, and NHR ratios.40,57 These measures were obtained

using sustained vowel phonation [TASK 1].

Calculation of these measures is usually based on an

autocorrelation method for determining the frequency and

location of each cycle of vibration of the vocal folds (pitch

marks).58 The jitter and measures of period perturbation rep-

resent the variability of the speech fundamental frequency

(pitch period) from one cycle to the next. The shimmer and

measures of amplitude perturbation are derived from the

sequence of maximum extent of the amplitude of the signal

within each vocal cycle. Jitter and shimmer are used as

measures to assess the micro-instability of vocal fold vibra-

tions. From these perturbation measures, we used only meas-

urements expressed as a percentage, as this method better

reflects differences in gender. The NHR and harmonics-to-
noise (HNR) ratios are derived from the signal-to-noise esti-

mates from the autocorrelation of each cycle and are used

for assessing voice hoarseness.

In this study, the measurements including jitter:local, jitter:

RAP (relative average perturbation), jitter:PPQ5 (period pertur-

bation quotient), jitter:DDP, shimmer:local, shimmer:APQ3

(amplitude perturbation quotient), shimmer:APQ5, shimmer:

APQ11, shimmer:DDA, NHR, and HNR were calculated using

algorithms supplied in the software package PRAAT.56

3. Articulation rate and pause characteristics

PD subjects reveal differences in articulation rate and

pause characteristics during speech in comparison with

HC.30,42,43 In this study, articulation rate, percent pause time,
and number of pauses were calculated for reading the text

[TASK 4], while percent pause time and the number of pauses

were also calculated for the monolog [TASK 5]. In order to

perform an automatic assessment, we used only calculation of

pause features in the monolog. The other speech material used

in this study is not suitable for articulation rate and pause char-

acteristics assessment because it consists of single sentences.

Percentage pause time calculation was based on the for-

mula: 100 � [(total time � articulation time)=total time],

where total time is the duration of the entire speech sample

and articulation time is the length of time remaining after

pause removal. The articulation rate was calculated after re-

moval of pauses from each sample, where pauses were defined

as silent periods lasting more than 60 ms that are not associ-

ated with stop closure. The articulation rate was calculated as

the number of syllables produced per second after removing

the pauses. Similarly, the number of pauses was then meas-

ured as the number of all pauses compared to total time dura-

tion, after removing the pauses not lasting more than 60 ms.

Previous studies found significant differences after the re-

moval of this time duration in PD patients compared to HC.59

In the present experiment, we designed a simple speech-

pause detector based on signal intensity and zero-crossing

rate (ZCR). We obtained the intensity and ZCR sequences of

the entire speech signal and performed three thresholds,

including, intensity mean value (IMV), intensity standard

deviation values (ISDV), and zero-crossing rate mean value

(ZCRMV). First, we compared the intensity of the current

sample with the first threshold (IMV). If the sample has a
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higher value than IMV, it is classified as speech. In the other

case, we compare the actual intensity sample with the second

threshold (|IMV � ISDV|). If it has a lower value, it is classi-

fied as silence. Once the sample is ranked in the <IMV

� ISDV, IMV> interval, we compare the actual ZCR sam-

ple with the third threshold (ZCRMV) and, in case of a

higher value, classified the sample as speech, while less

value is classified as silence. The thresholds of the speech-

pause detector were based on the experimental set up, and

the results were validated by hand-marking. Algorithm eval-

uation using a speech-pause detector can be performed

automatically.

4. Intensity of voice

PD speakers have been found to have an overall lower in-

tensity level, deficits in intensity range, and intensity variations

during speech production.31 Similarly to the F0 measures, we

do not use an absolute value of intensity level or an absolute

range of intensity as measurements, based on a need for precise

calibration for obtaining reliable estimates. As a result, we are

restricted to relative measures of intensity variation with rela-

tive calibration to the reference of 0 dB. A precondition for suc-

cessful measuring is then to maintain a constant distance from

the microphone during the entire course of each recording.

The measurements of intensity variations (intensity SD)

were determined using the reading text [TASK 4] and the

monolog [TASK 5]. Similarly as in the F0 SD measurement,

we also used measurement of stress patterns [TASK 6] with

the aim of improving the intensity loudness variations.

The calculation of intensity variation was determined as a

SD from the intensity sequences after removing all silence

periods exceeding 60 ms to ensure that only clear speech was

acquired. In this study, the window size of 1024 points (21.3

ms) was used to compute all energy contours. The intensity

SD feature extraction can be performed automatically.

5. DDK rate and regularity

The DDK task is the measurement of the subject’s ability

to repeat rapidly and steadily a C-V combination and usually

consists of two measures. The average DDK rate is the num-

ber of syllable vocalizations per second. The coefficient of

DDK regularity measures the degree of rate variations in the

period and assesses the ability to maintain a constant rate of

C-V combinations. These two measurements were determined

from repetition of the three-syllable items of /pa/-/ta/-/ka/

[TASK 2].

In order to devise a reliable algorithm for determining the

DDK task measurements, we have to detect the local maxima

(maximum energy during each syllable). First, we construct

an integral envelope with the constant of integration set to

0.997. Subsequently, we normalize the integral envelop to the

range [–1, 1]. Then we perform zero-phase digital filtering

(averaging filter) by processing the input data in both the for-

ward and reverse direction using a 1024-point size window.

As a result, we arrive at smoothed sinusoidal signal that we

again normalize to the range [–1, 1]. Finally, we estimate the

local maxima which are computed from three continuous

samples. Each sample value is compared to its neighboring

value, and if it is larger than both of its neighbors, it is a local

maximum. The feature extraction using this algorithm can be

obtained automatically. The DDK rate is calculated as the

number of estimate maximums per second and DDK regular-

ity as the variance of the maximums.

6. VOT duration

The VOT is typically measured as the duration of time

from the articulatory release of a stop consonant to the onset of

voicing for the following vowel. VOT commonly refers to the

temporal coordination between the oral articulation of a stop

consonant and the laryngeal mechanism required to produce

periodic vibration of the vocal folds. The measurement of

VOT from the DDK task [TASK 2] may be a suitable mea-

surement for detecting the extent of PD speech impairment,

yet findings exist in the literature indicating that VOT changes

in persons with PD are inconsistent.42,43 Moreover, the PD

speech impairment may be affected by hoarseness in the voice.

Consequently, it is difficult to achieve a precise assessment of

the VOT boundaries. Although the VOT is a traditionally used

measurement method, we do not include it as a measure,

because it is adversely affected by inconsistent results and no

reliable algorithm exists for its reliable measurement.60,61

7. Formant frequencies F1 and F2

The main traditional measurement method using formant

frequencies is the vocal tract vowel area. It is calculated by

obtaining the mean values of the F1 and F2 frequencies dur-

ing production of corner vowels and by subsequently plotting

on an xy coordinate plane with F1 on the x-axis and F2 on the

y-axis. This total area is calculated by measuring the entire

triangle area. The vowel area was determined from phonation

of three corner vowels including /i/, /u/, and /a/ [TASK 3].

We used the robust formant trackers of Mustafa and

Bruce62 for continuous speech with speaker variability for

obtaining the formant sequences. The algorithm targets robust

noise tracking and is based on a different approach than PRAAT,

where the formant extraction relies on linear predictive coding

(LPC) analysis. The algorithm works as follows: After a pre-

emphasis and Hilbert transformation the signal is filtered by

four formant filters. These are adaptive bandpass filters whose

zeros and poles are updated based on the formant frequency

estimates at the previous time stage, by means of which sepa-

ration of formants into different channels can be achieved. A

first-order LPC analysis performed on each of the four filter

channels finally estimates the F1–F4 formants. Each formant

filter consists of an all-zero filter cascaded with a single-pole

dynamic tracking filter. The filter combinations are used to

simplify normalization of the filter frequency response. The

zeros and pole of each formant filter are updated for every

sample; updating is based on the previous formant frequency

estimates, allowing for dynamic suppression of interference

from neighboring formants, while tracking an individual form-

ant frequency as it varies over time. Finally, we obtain F1 and

F2 formant sequences from the tracker and convert them to the

logarithmic semitone scale and calculate their mean values.

The entire total area is then calculated by the Euclidean distan-

ces between the F1 and F2 formant coordinates of the corner
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vowels, and it is expressed in semitone squared. The formant

tracker uses 8 kHz as an optimal sampling frequency.

The algorithm has a low signal delay and provides

smooth and accurate estimates for the first four formant fre-

quencies at moderate and high signal-to-noise ratios. Thor-

ough testing of the algorithm has shown that it is robust over

a wide range of signal-to-noise ratios for various types of

background noises. The main advantage of the robust form-

ant tracker is its full automatic assessment. The obtained

results were also validated using PRAAT software, though its

use can be regarded as optional.

8. Rhythm

A lowered ability to reproduce perceived speech rhythm

may be one of the deficits in PD speech. We performed a

speech measurement in which the participants were asked to

repeat eight rhymes in the same rhythm prolongation as they

heard in the reference speech sample (template) recorded by

a speech therapist [TASK 8]. The purpose of the measure is

thus for efficient comparison of the similarity between the

subject and the template.

As a solution suitable for the measurement of rhythm, we

used a technique known as dynamic time warping (DTW), a

well-known method that has been used in speech recognition

for aligning time series.63 DTW uses the principle of dynamic

programming (principle of optimality) in order to find the dis-

tance along the optimal warp path to determine the similarity

between two speech waveforms.

To implement these insights algorithmically, the speech

recordings were first down-sampled to 16 kHz. As features in

DTW, we used a spectral representation of the speech data by

calculation of the short-time Fourier transformation (STFT).

We apply a Hamming window with a default size of 32 ms

(512 points) and with a default overlap of 24 ms (384 points).

In order to align utterance with the template, we created a

similarity matrix, in which each point gives the Euclidean

distance between short-time spectral analyses of the speech

recordings. Subsequently, we used dynamic programming to

find the lowest-cost path between the starts and ends of the

sequences through the similarity matrix. Finally, this general

cost of path distance normalized by the total sum cost of the

matrix is used as the classifier for the relative rhythm similar-

ity measurements between the individual’s speech recording

and the speech therapist’s template. The measurement of

rhythm can be performed automatically. An implementation

process overview is shown in Fig. 1.

E. New non-standard measurement methods
of articulation

Articulation is one of the most strongly affected PD

speech subsystems. The use of the DDK task allows for the

performance of an efficient and a quick articulatory test.

With such a measurement, we can efficiently assess the

defects in PD articulation. As a consequence of rapid steady

syllable repetition, problems can develop in the syllable rate

and variations, but simultaneously significant defects can be

present in respiratory pressure level, accuracy, and clarity of

articulation. Thus, new measurement methods determined

from the DDK task are introduced [TASK 2], which comple-

ment the standard DDK task measurements. Although the in-

tensity measurements presented here below are more likely

interconnected with problems in respiration, we introduced

them as articulation measurements because the intensity

defects can be developed simply as a consequence of rapid

articulation. The DDK task is performed without pausing for

breath. The feature extraction using these new proposed

methods can be obtained automatically. See the second part

of Table III for a list of the measures used as features in this

part of study.

1. Relative intensity range variation (RIRV)

As we discuss in the Sec. II D 4, one of the observations

related to the intensity deficits in PD dysarthria is reduced

loudness. The other problem that can occur as a consequence

of PD production deficits during fast articulation is occlusive

weakening.64 We notice that these PD-related differences

may be captured when performing relative intensity contour

during DDK task articulation in comparison to the HC. As a

result, we performed RIRV measure calculation as a SD of

the intensity curve with relative calibration to a reference of

0 dB. The first difference between measurements of RIRV

and intensity SD is that the DDK task is performed without

pausing for breath, and thus there is no need for removal of

pauses from speech signal. The second difference is the fact

FIG. 1. The alignment process using DTW for measurement of ability to

reproduce perceived rhythm. The resulting alignment path may be visual-

ized as a low valley of Euclidean distance scores between speech spectrum

segments of patients and speech therapist template recording, meandering

through the hilly landscape of the matrix, beginning at (0, 0) and ending at

the final point (X, Y).
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that here the occlusive weakening causes only lower varia-

tions in the relative intensity contour.

2. Robust relative intensity slope (RRIS)

One other problem occurring as a result of defects in re-

spiratory function caused by PD-related dysarthria may be

the inability to maintain the intensity level. For this reason,

we perform a measure that we dub RRIS, a robust measure-

ment of the intensity decline in performing the DDK task.

To implement it algorithmically, we need to perform a lin-

ear regression to calculate the slope of the relative intensity

contour. Although the use of standard linear regression based

on least squares estimation can be suitable for fitting the slope

of the intensity contour, it can behave badly when the error

distribution is outside of the normal range, particularly when

the errors are heavy-tailed. Our approach is to employ a fitting

criterion that is not as vulnerable to unusual data, such as that

of least squares. Therefore, we perform a robust regression

based on usage of iteratively reweighted least squares (IRLS)

with a bisquare weighting function.65 The IRLS algorithm

uses weighted least squares, the influence of outliers being

reduced by giving that observation a smaller weight. The

weights chosen in a single iteration are related to the magni-

tudes of the residuals in the previous iteration, with a large

residual earning a small weight. The weights are related to M-

estimates, the measures of location that are not as sensitive as

the mean to outlier values. See Ref. 65 for a detailed algorithm

description. The final RRIS value is computed as total intensity

decline divided by the total time duration of the DDK task.

The advantage of the robust fit achieved using the ILRS

approach is that it is less influenced by the outliers than the least

squared fit. Therefore, the robust intensity slope will be more

suitable in practice when performing an automatic assessment.

3. Spectral distance change variation (SDCV)

The PD voice disorder is also affected by impaired

clarity of articulation. The deficiencies of articulation clarity

can be better demonstrated in the signal speech spectrum. In

order to capture these deficits, we used the Bayesian autore-

gressive change-point detector.66

We consider the signal model for the Bayesian detector

to consist of two parts, which are described by two different

autoregressive models: the “left” autoregressive (AR) model

with M1 parameters ak and the different “right” AR model

with M2 parameters bk

dðnÞ ¼

PM1

k¼1

ak � dðn� kÞ þ eðnÞ; n � m

PM2

k¼1

bk � dðn� kÞ þ eðnÞ; n > m

8>>><
>>>:

n ¼ 1;… ;N; (1)

where m is the change-point position, e(n) is the excitation pro-

cess with SD r. The Eq. (1) can be written compactly in matrix

form as d ¼ GA � bA þ e; where, the matrix GA has the Jordan

form and depends on the unknown index of change-point m.

We likewise evaluate the value of the change between

models. Using an analytical solution of the Bayesian theorem

we obtain the formula for posterior probability, which is a

function of the analyzed data, the signal length, and order

autoregressive models only67

~pðmjd;MÞ ¼
D� gAUAgT

A

� ��ðN�M=2Þ

ffiffiffiffiffiffi
DA

p ; (2)

where the matrix UA ¼ GT
AGA

� ��1
is the inverse correlation

matrix, D ¼ dTd is the signal energy, gA ¼ dTGA is the cor-

relation vector, and DA ¼ det GT
AGA

� �
.

The signal sample with the largest change in the signal

(change-point) is determined by the maximum of the poste-

rior probability, which is calculated from the Eq. (2). How-

ever, if there are more changes in the signal then the formula

could not be used directly. The assumption of a single

change is very restrictive in practice, since more abrupt spec-

tral changes are invariably present in human speech. How-

ever, this drawback can be overcome by calculating the

probability in a sliding window with fixed length and nor-

malized using Bayesian evidence66

~pðmjd;MÞ ¼
D� gAUAgT

A

� ��ðN�M=2Þ

ffiffiffiffiffiffi
DA

p

�
ffiffiffiffi
D
p

D� gU gTð Þ�ðN�M=2Þ : (3)

The second term represents data dependent Bayesian

evidence, where U, D, g, and D are defined similarly to the

previously established parameters but with respect to the

entire signal segment without any division into left and right

parts. Posterior probability [Eq. (2)] was derived from the

Bayesian formula under the condition that a given data

segment d is constant. Thus the Bayesian evidence in the

denominator of the Bayesian formula was constant. But if

the posterior probability is repeatedly used for new signal

samples, then the data are not constant, and thus Bayesian

evidence must be evoked to normalize.

The probability of the signal changes is then calculated

from Eq. (3) for the sample signal which is situated in the

middle of the rectangular window. In other words, the output

of the algorithm is the degree of unlikeness between the signal

in the left and right half of the window through which we pass

all signals sample by sample. The normalized recursive autor-

egressive Bayesian change-point detector of sixth order with a

windows length of 512 samples was used for detection.

We introduce a new measure called SDCV, a robust

measure sensitive to observed changes in articulation clarity.

The SDCV is calculated as a SD from the detector output,

where the higher values of the output signal are proportional

to the greater spectral distance of two adjacent segments and

represent a greater clarity of articulation. A possibility like-

wise exists of using alternative detectors—see Ref. 68 for a

comprehensive description.

4. Robust formant periodicity correlation (RFPC)

The F2 slope is a traditional measurement representing

the rate of tongue movement from a consonant into a
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vowel.42 For assessing the accuracy of articulation, it is

measured by comparing the F2 value at the onset of voicing

to the F2 value in fixed time, for example, 50 ms into the

vowel. As in the case of VOT measurement, the robust F2

slope assessment requires precise C-V boundaries detection.

In order to avoid designing a complex algorithm, we

perform a new robust measurement called RFPC, the mea-

sure used to assess the similarity of tongue movement and

thus accuracy of articulation. We use a robust formant

tracker to obtain the F2 sequence from the DDK task.62 The

obtained formant values in low-energy segments are proc-

essed using a moving average filter, which ensures smooth

tracking in unvoiced segments. The final obtained sequence

represents the similarity of F2 slopes during entire vocal

task. Then we simply estimate the first autocorrelation coef-

ficient using the short-time autocorrelation, where a higher

autocorrelation coefficient value means better articulation

accuracy of the tongue.

F. Statistics and pre-selection stage

In practice, we need to find the relevance of individual

measures that can subsequently be used to assess the extent

of voice impairment. To obtain statistically significant differ-

ences between the groups, we compare the individual meas-

ures by using the non-parametric two-sided Wilcoxon rank

sum test against the null hypothesis of equal medians, at a

significance probability of 0.05.

Also, many measurements can be highly correlated with

other measurements for the reason that they measure very

similar aspects of the signal. For example, all types of

shimmer features measure the extent of variation in speech

amplitude cycle to cycle. Therefore, calculation of the Pear-

son product-moment correlation coefficient was used to test

for significant correlations.

To set the best classification performance, we discard all

measures with statistically non-significant relationships

between the PD and HC groups. Subsequently, from all

highly correlated measures with a correlation coefficient of

greater than 0.95 (95% confidence interval), only one mea-

surement will be kept which correlates with the greatest

number of similar measurements and gains the most statisti-

cally significant differences between the PD and HC groups.

G. Classification stage

In this final stage, we apply the classification based on

the Wald task to assess the relevance of the individual meas-

ures, as well as the extent of vocal impairment. The Wald

task presents only a tiny part of scientific area known as

Wald sequential analysis.35,69

This task is classification method based on the Neyman–

Pearson task,70 where the object is characterized by the feature

x which assumes the value from the set X. There are two possi-

ble states including the normal one, k ¼ 1, and the dangerous

(undesirable) one, k ¼ 2. Thus, the set of states K is {1, 2}. The

probability distribution of the feature x depends on the state k to

which the object belongs. The probability distributions are

known and defined by a set of conditional probabilities

pXjK xjkð Þ; x [ X, k [ K. For purpose of recognition, the set X is

divided into two subsets X1 and X2. If the observation is x [ X1,

the object is determined to be the normal state, and the danger-

ous state is thus for an observation x [ X2. In real conditions,

some values of the feature x can occur both in the normal and

dangerous states. The result of the decision is then characterized

by two numbers where the first is the probability of an event

that the normal state will be recognized as a dangerous state

(false positive or false alarm), and the second one is the proba-

bility of the event that the dangerous state will be recognized as

a normal state (false negative or overlooked danger). The condi-

tional probability of the false positive state is given by

x 1ð Þ ¼
X
x2X2

pXjK xj1ð Þ; (4)

and the conditional probability of the false negative state is

then

x 2ð Þ ¼
X
x2X1

pXjK xj2ð Þ: (5)

In the Neyman–Pearson task, the classification strategy

is chosen from all strategies satisfying the above condition

for which, first, the conditional probability of the false nega-

tive is not larger than a predefined value e. Second, the con-

ditional probability of the false positive is the smallest.

However, there is a lack of symmetry with respect to the

states of the recognized object, which is apparent where the

Neyman–Pearson task is recalled. To provide a thorough

elimination of this lack of symmetry, the Wald task is not

formulated as the set X of the two subsets X1 and X2 corre-

sponding to a decision for the benefits of the first and second

state but as a classification in three subsets X0, X1, and X2

with the following meaning:

if x [X1, then k ¼ 1,

if x [X2, then k ¼ 2,

if x [X0, then it is decided that the observation x does not

provide enough information for a safe decision about the

state k.

The classification strategy is characterized by

x(1) is the conditional probability of a wrong decision about

the state k ¼ 1,

x(2) is the conditional probability of a wrong decision about

the state k ¼ 2,

v(1) is the conditional probability of an indecisive situation

under the condition that the object is in the state k ¼ 1,

v 1ð Þ ¼
X
x2X0

pXjK xj1ð Þ; (6)

v(2) is the conditional probability of an indecisive situa-

tion under the condition that the object is in the state k ¼ 2,

v 2ð Þ ¼
X
x2X0

pXjK xj2ð Þ: (7)

For such strategies the requirements xð1Þ � e and

xð2Þ � e are not contradictory for an arbitrary non-negative

J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011 Rusz et al.: Acoustic analysis of Parkinson’s disease 359

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



value e because the strategy X0 ¼ X, X1 ¼ 0, X2 ¼ 0 belongs

to the class of allowed strategies too. Each strategy meeting

the requirements xð1Þ � e and xð2Þ � e is, moreover, char-

acterized by how often the strategy is reluctant to decide,

i.e., by the number max v 1ð Þ; v 2ð Þð Þ.
The Wald task seeks among the strategies satisfying the

requirements xð1Þ � e and xð2Þ � e for a strategy which

minimizes the value max v 1ð Þ; v 2ð Þð Þ. The solution of this

task is based on the calculation of the likelihood ratio

c xð Þ ¼
pXjK xj1ð Þ
pXjK xj2ð Þ : (8)

We used the Gaussian kernel density method with auto-

matic data-driven bandwidth to estimate probability distribu-

tions from each measurement for PD and HC groups.71 This

pair of distributions represents the feature for classification.

For gaining the best classification accuracy, both prede-

fined values e were set to a 95% significance level. Finally,

the linear programming technique was used to solve the

Wald task. The comprehensive description of the solution of

the Wald task through linear programming can be found in

Ref. 35. Figure 2 shows the result of the Wald task classifica-

tion applied to an example of a generated distributions pair.

H. Overall calculation and validation

For overall calculation, each of the measures selected by

the pre-selection stage represents one feature for Wald task

classification. In the case that the subject’s speech perform-

ance in the set measure matches the disordered speech per-

formance of the PD group (is classified as PD), the subject is

rated by “1” positive point. In the other case, where the sub-

ject’s speech performance matched the intact speech per-

formance of the HC group (is classified as HC), the subject

is rated by “�1” negative point. In case of an indecisive sit-

uation, where the subject’s speech performance does not

have sufficient predictive quality for secure assignment to

one of the PD or HC groups, i.e., is not fully intact or

impaired but matches the extent of speech performance of

the wider norm, the subject is rated by “0” point. This “�1,

0, 1” three state-scale was designed with respect to physio-

logical background, where we want to determine clearly if

the tested subject reached the PD-specific (or intact) vocal

performance in the selected task instead of giving the various

weight to each classification. We want to be “sure” that any

speech performance which has the possibility of belonging

to the wider norm of healthy people (not obviously PD-spe-

cific or intact) will not be marked. This approach also gives

the same weight to all measurements; we do not consider

that the combinations of certain measurements may be more

useful for overall classification performance as most classi-

fiers do. For obtaining the final results, we calculate the sum

of points for each subject. The higher quantity of positive

points predicts the greater vocal impairment. The number of

negative points corresponds to the performance of healthy

speech production. The overall number of classified points

for each measurement represents the suitability of the mea-

surement in separating patients with PD from HC partici-

pants, and it is calculated as sum of all assigned values.

In order to validate our classification results, compari-

sons with speech therapist evaluations were performed. The

speech therapist performed an independent examination

based on various voice and speech recordings composed

from a number of items including measuring of phonation

and phonetics and then assessed each participant using a

seven-point rating scale. The rating scale values represent

the complete speech performance of each subject; a value

equal to 1 point signifies intact speech performance, and a

value equal to 7 represents progressing vocal impairment.

Finally, the Pearson correlation coefficient was performed to

ascertain the relationships between the score obtained from

the speech therapist and the acoustic evaluation methods.

III. RESULTS

A. Voice and speech characteristics

The means, SDs, correlations between the measurement

methods, statistical significances, and summaries of retained

measures for the Wald classifier are listed for all measures in

this study (see Table IV for more details). The results are

presented below according to speech characteristics (i.e.,

phonation, articulation, and prosody).

Statistical significances between the PD and HC group

were found in all measurements of phonation except pitch

variations (F0 SD). This can be caused by the fact that peo-

ple with early stages of PD need not show impaired control

of stationary voice pitch during sustained phonation. On the

other hand, more signal noise addition captured by NHR

measures can indicate incomplete vocal fold closure and

incorrect vocal fold oscillations. The noise in speech can be

also generated by turbulent airflow through the vocal fold.

Significant findings in measurements, including all types of

shimmers and jitters features, NHR, and HNR, can be mani-

fested clinically as hoarseness, hypophony, and tremolo.

From traditional articulatory measurements including

DDK rate, DDK regularity, and vowel space area, only the

FIG. 2. The top part of the figure shows a selected example of probability

densities. The bottom of the figure shows the result of Wald task classifica-

tion. As a result, the dark-gray shaded bars are the regions in which the fea-

ture x assumes the value from the subset X1 and the light shaded bars are the

areas predicted for the subset X2. The black bars represent the indecisive sit-

uation, for which observation x [ X0 does not provide sufficient information

for a safe decision regarding one of the subsets X1 or X2.
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DDK rate contains significant differences between both

groups. The DDK regularity did not show any significant dif-

ferences. Although the PD total vowel area was found to be

slightly reduced in comparison with HC, there was no statis-

tically significant difference. In Fig. 3, we can see the plot of

the total vowel triangle area of the PD and HC groups. The

patients with PD show abnormalities in each new non-stand-

ard articulation measurement. Figure 4 shows the result of

calculating the RIRV, RRIS, SDCV, and RFPC values for a

selected speech signal. As can be seen, the PD speech signal

show lower similarity in repeated syllable production, which

can indicate reduced movement of orofacial muscles. In

many patients with PD are developed intensity defects in

instances of rapid articulation. The reduced intensity varia-

tions that can be caused by occlusive weakening are demon-

strated by the RIRV measure. As an example, voiceless

occlusives, which are normally associated with a silent gap,

tend to exhibit energy during the silent gab. This energy can

be caused by turbulent noise generated at the site of oral con-

striction because of an incomplete occlusion or voicing

TABLE IV. List of results of all measures with mean values, SD values, correlations between the measurements methods, statistical significances, and sum-

maries of retained measures. See main text for detailed description of the algorithm used to calculate these results.

Measurement

Subjects

Redundant

to

measurement?

Difference

between

groups

Retained

for Wald task

classification?

PD HC

Mean SD Mean SD

Phonation

[TASK 1] Sustained phonation

01. F0 SD (semitones) 0.46 0.49 0.35 0.23 No p ¼ 0.29 No

02. Jitter:local (%) 1.53 1.37 0.65 0.78 Jitter(RAP,PPQ5,DDP) p < 0.01 No

03. Jitter:RAP (%) 0.88 0.81 0.38 0.52 Jitter(local,PPQ5,DDP) p < 0.01 No

04. Jitter:PPQ5 (%) 0.83 0.75 0.32 0.32 Jitter(local,RAP,DDP) p < 0.01 Yes

05. Jitter:DDP (%) 2.65 2.42 1.14 1.56 Jitter(local,RAP,PPQ5) p < 0.01 No

06. Shimmer:local (%) 7.51 4.97 2.72 2.27 Shimmer(APQ[3,5,11],DDA) p < 0.001 Yes

07. Shimmer:APQ3 (%) 3.69 2.57 1.39 1.36 Shimmer(local,APQ5,DDA) p < 0.001 No

08. Shimmer:APQ5 (%) 4.37 3.07 1.45 1.13 Shimmer(local,APQ[3,11],DDA) p < 0.001 No

09. Shimmer:APQ11 (%) 6.32 3.85 2.20 1.64 Shimmer(local,APQ5) p < 0.001 No

10. Shimmer:DDA (%) 11.07 7.71 4.17 4.07 Shimmer(local,APQ[3,5]) p < 0.001 No

11. NHR (-) 0.16 0.27 0.02 0.04 No p < 0.01 Yes

12. HNR (dB) 16.01 7.36 24.02 5.61 No p < 0.001 Yes

Articulation

[TASK 2] DDK task

13. DDK rate (syll/s) 6.22 0.63 7.16 0.73 No p < 0.001 Yes

14. DDK regularity (-) 0.54 0.58 0.67 0.36 No p ¼ 0.49 No

15. RIRV (dB) 7.54 1.52 10.99 1.96 No p < 0.001 Yes

16. RRIS (dB/s) 2.75 1.51 1.16 1.12 No p < 0.001 Yes

17. RFPC (-) 0.46 0.17 0.60 0.09 No p < 0.01 Yes

18. SDCV (-) 0.14 0.03 0.18 0.03 No p < 0.001 Yes

[TASK 3] Sustained vowels

19. Vowel area (semitones2) 94.19 29.24 95.10 25.84 No p ¼ 0.66 No

Prosody

[TASK 4] Reading text

20. F0 SD (semitones) 1.71 0.66 2.48 0.56 No p < 0.001 Yes

21. Intensity SD (dB) 5.93 1.05 7.55 1.62 No p < 0.001 Yes

22. Percent pause time (%) 0.30 0.02 0.29 0.02 No p ¼ 0.30 No

23. Articulation rate (syll/s) 6.09 0.78 6.09 0.84 No p ¼ 0.58 No

24. No. pauses (pauses/s) 3.29 0.67 3.98 0.51 No p < 0.01 Yes

[TASK 5] Monolog

25. F0 SD (semitones) 1.53 0.32 2.44 0.65 No p < 0.001 Yes

26. Intensity SD (dB) 7.05 1.41 8.75 1.51 No p < 0.001 Yes

27. Percent pause time (%) 0.32 0.03 0.31 0.03 No p ¼ 0.14 No

28. No. pauses (pauses/s) 3.04 0.83 3.86 0.69 No p < 0.01 Yes

[TASK 6] Stress patterns

29. F0 SD (semitones) 2.06 0.81 2.78 0.62 No p < 0.01 Yes

30. Intensity SD (dB) 6.40 1.07 7.84 1.97 No p < 0.01 Yes

[TASK 7] Emotional sentences

31. F0 SD (semitones) 2.59 0.74 3.82 0.56 No p < 0.001 Yes

[TASK 8] Rhythmic text

32. Rhythm (-) 2.65 0.55 2.27 0.28 No p < 0.01 Yes
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energy which occurs as a result of poor coordination between

laryngeal and supralaryngeal gestures. The results of RRIS

show that PD patients have a lower ability to maintain the inten-

sity level, which can be caused by weakness in the production

of stable airflow from the lungs. The remaining two measures

involve the spectral speech changes. The higher number peaks

in SDCV represent a greater clarity of articulation. The rate and

similarity of tongue movement are well represented by the

RFPC measure. The higher periodicity in the obtained F2

sequence represents better articulation accuracy of tongue.

Ten of 13 measures of prosody contained significant sta-

tistical results. The patients with PD show lower melody

intonation in all F0 SD measurements and also decreased in-

tensity variations in all intensity SD measurements. This sit-

uation can be caused by changed laryngeal tension,

decreased breath support, and decreased range of motions.

The persons with PD have not shown any significant differ-

ences in the articulation rate compared to HC. From pause

characteristics, only the measurements of number of pauses

show significant differences between groups. This can be

indicated by breathiness and starting time of the tongue

movement. The patients with PD also show a lower ability

to reproduce perceived rhythm perception.

B. Data pre-selection

Statistically significant relationships between the HC and

PD groups have been found in 26 of a total of 32 measures.

The rest of the measures were statistically insignificant and

were discarded. These include the measures of F0 SD in sus-

tained phonation, DDK regularity, vowel area, percent pause

time, and articulation rate.

The perturbation measures, including all kind of jitter

and shimmer features, are highly correlated with correlation

coefficients greater than 95%. The measurements of jitter:

APQ5 and shimmer:local were retained for their optimal

performance in separating HC from PD patients. Correlation

filtering removes the following measures: jitter:local, jitter:

RAP, jitter:DDP, shimmer:APQ3, shimmer:APQ5, shimmer:

APQ11, and shimmer:DDA.

The rightmost column in Table IV represents the

retained measurements for Wald’s classifier after correlation

and removal of statistically insignificant measurements.

C. Feature selection and classification

After pre-processing by removing statistically insignifi-

cant and highly correlated measures, Fig. 5 shows distribu-

tions estimated by using the Gaussian kernel density method

for all of the 19 representative measures that have passed the

significance and pre-selection test. The articulation and pros-

ody measures show more distinction between the modes of

FIG. 3. The vowel triangle space areas for subjects with PD (up) and HC

subjects (down). FIG. 4. Details of new articulation measures performed on rapid steady syl-

lable repetition. (a and b) Speech signals of rapid steady /pa/-/ta/-/ka/ sylla-

bles repetition; (c and d) light gray lines represent obtained intensity

sequences, dashdot lines represent the RRIS. The RIRV is computed as SD

from the obtained intensity; (e and f) SDCV; (g and h) RFPC. The left panel

is for a person with PD, the right panel is for a HC subject.

362 J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011 Rusz et al.: Acoustic analysis of Parkinson’s disease

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



the values for both groups, whereas the modes of phonation

measures are not as well separated. The visual inspection of

the layout of each pair of these measures indicates that the

optimal decision separating HC from PD may not be a sim-

ple intersection between two distributions. Thus, the Wald

task provides a greater opportunity for not deciding to clas-

sify the subject as HC or PD, instead of forcing classification

into one of the groups. This strategy essentially increases the

overall effectiveness of classification in finding the signa-

tures of specific voice and speech impairment.

Table V details the results of classification. From a total

sum of 874 points, 234 were classified according to their

group while only 11 were classified to the inverse group

(26.77% vs 1.26%), which signifies that they achieved the

speech performance of the inverses group in the selected

task. The 629 remaining points (71.97%) were classified as

an indecisive situation. Two of the 23 patients with PD

reached performance as healthy people (8.7%), and none of

23 HC was classified as PD. The Wald task classifier was

confirmed reliably to find the signs of vocal impairment or

healthy voices according to the subject’s speech performance.

The F0 SD measurements in monolog and emotional senten-

ces carry the greatest amount of information for separating

HC from PD patients with classification performance of

60.87% (28 decisions). The RIRV in DDK task was the third

best assessment method and gained 50% performance

(23 decisions). The lowest scores in determining both of the

groups were found in the measurement of jitter and F0 SD

determined from stress patterns (10.87%, five decisions). The

accuracy of the remaining representative measures ranged

between 15% and 37% (7–17 decisions), which is why we

have not listed detailed results. The correlation between the

speech therapist and the classification result was 79.32%

(r ¼ 0.7932, p ¼ 0.4948 � 10–11) and thus complemented

the correctness of the acoustic measures and validated classi-

fication performance.

Finally, we need to decide the number of the signs that

could characterize some form of vocal impairment in

patients with PD. Considering all of the 32 performed meas-

ures (including the measures removed in the pre-selection

stage) and demanding the significance probability of 5%

from a correctly classified subject with PD, we find that all

FIG. 5. Selected probability densities of all representative measures (features) in preparation for Wald task classification. The vertical axes are the probability

densities P(“measure”) of the normalized features values of each measure. The dashdot lines are for HC speakers, the solid lines for PD subjects.
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TABLE V. List of Wald task classification values for all pre-selected measures and values of speech therapist evaluation. See main text for detailed descrip-

tion of the algorithm used to calculate these results. The total sum of the overall performance value represents the speech performance of each subject: More

positive points are associated with higher progression of PD vocal impairment; the negative points show healthy speech performance. The total sum of ratings

represents the suitability of the measure in differentiating PD patients from HC. The speech dimension was designated as affected when it reached at least two

points of voice impairment assessment. The speech therapist evaluation represents rating scores of full vocal assessment: 1 point ¼ intact speech performance,

7 points ¼ progressed speech impairment.
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PD02 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 PH1AR1PR 15 5

PD03 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 PH1PR 7 4

PD04 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 PH1AR1PR 9 3

PD05 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 None 1 2

PD06 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 PH1AR1PR 7 4

PD08 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 AR 4 3

PD09 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 PR 3 3

PD10 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 PH1PR 7 6

PD11 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 AR 3 3

PD12 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 PR 2 5

PD13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �1 None 21 2

PD14 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 AR1PR 5 5

PD15 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 PR 6 5

PD16 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 �1 0 ARþPR 4 2

PD17 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 PR 6 4

PD18 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 AR 3 3

PD19 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 PH1PR 9 4

PD20 0 0 0 0 0 1 0 0 0 �1 1 0 1 1 1 1 1 0 0 PR 6 4

PD21 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 AR 3 5

PD22 0 0 �1 0 0 0 0 �1 0 0 0 0 1 0 0 0 0 0 �1 None 22 3

PD23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 None 1 2

PD25 0 0 0 0 0 0 0 0 1 0 �1 0 0 0 0 0 0 0 0 None 0 3

PD26 0 0 �1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 PR 2 4

HC02 0 �1 �1 �1 0 0 0 0 0 0 �1 0 �1 0 0 0 0 0 �1 None 26 2

HC03 0 0 0 0 0 0 0 0 �1 �1 0 0 0 0 �1 0 0 0 0 None 23 2

HC04 0 0 0 0 0 0 0 �1 �1 0 �1 0 �1 �1 �1 0 �1 0 0 None 27 1

HC05 0 0 0 0 0 0 0 0 1 0 �1 0 �1 0 0 0 0 0 0 None 21 2

HC06 �1 �1 �1 �1 0 �1 0 0 0 0 �1 0 �1 �1 �1 �1 0 0 �1 None 211 1

HC07 �1 0 �1 �1 �1 0 �1 0 0 0 �1 0 �1 0 1 0 0 �1 0 None 27 1

HC08 0 0 0 0 �1 0 0 0 �1 �1 0 0 0 0 �1 0 0 0 0 None 24 1

HC09 0 �1 0 0 0 �1 �1 �1 �1 0 �1 �1 0 0 0 �1 �1 0 �1 None 210 1

HC10 0 0 0 0 0 �1 0 0 0 �1 �1 0 �1 0 0 0 �1 0 0 None 25 2

HC11 0 0 0 0 0 �1 �1 �1 �1 0 0 0 0 0 0 0 0 0 0 None 24 1

HC12 �1 �1 �1 �1 �1 �1 0 0 �1 0 �1 0 0 0 0 0 �1 �1 0 None 210 1

HC13 0 0 0 0 0 �1 0 0 �1 0 �1 0 �1 �1 �1 0 0 0 0 None 26 1

HC14 0 �1 0 0 0 1 0 0 0 0 �1 0 0 0 0 0 0 0 0 None 21 2

HC15 0 0 �1 0 �1 �1 0 0 0 0 �1 0 �1 0 0 0 0 0 0 None 25 2

HC17 0 0 0 0 0 �1 0 0 0 0 0 �1 �1 �1 0 �1 0 0 �1 None 26 3

HC18 0 0 0 0 �1 0 0 0 �1 0 0 0 �1 0 0 0 �1 0 �1 None 25 2

HC19 0 �1 0 0 0 �1 0 0 �1 �1 �1 0 �1 �1 0 0 0 0 0 None 27 2

HC20 0 0 0 0 0 �1 0 0 0 0 �1 0 0 0 0 0 0 0 0 None 22 2

HC21 0 �1 �1 �1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 None 24 2

HC22 0 �1 �1 0 �1 0 0 0 0 0 �1 �1 �1 �1 0 0 0 0 �1 None 28 2

HC23 0 0 0 0 0 0 0 �1 0 0 0 0 �1 0 0 0 0 0 0 None 22 1

HC24 0 �1 0 0 0 �1 0 0 0 �1 0 �1 �1 0 0 0 0 0 0 None 25 2

HC25 0 0 0 0 0 0 0 0 0 �1 0 0 �1 0 0 0 �1 �1 0 None 24 1

+ |Ratings| 5 14 14 11 12 23 7 9 17 11 28 5 28 13 10 7 12 6 13
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PD patients with a final score higher than or equal to 2 ex-

hibit some form of speech impairment.

When each speech characteristic including phonation,

articulation, and prosody is taken separately, we can see that

the patterns of speech performance are spread through all

speech dimensions only in the HC group (see Table IV). As

can be seen in Fig. 6, the vocal impairment in early stage of

the PD in the view of all speech dimensions is rather individ-

ual. From 23 people with PD, 18 are affected (78.26%). Con-

sidering that 2 signs are enough to determine the speech

impairment, we found phonatory deficits in 6 cases (26.09%),

lower ability of articulation in 9 cases (39.13%), and 14 cases

of certain problems with prosody (60.87%) in PD patients.

Deficits in all speech characteristics were found only in three

people with PD (13.04%). Six PD subjects show deficits only

in prosody (26.09%), four PD patients only in articulation

(17.39%), none in phonation, and five in some combination of

two speech characteristics (21.74%). There is also a need to

take into account that the speech measurements can be par-

tially interconnected in all speech dimensions. Hence, the

speech impairment in early stages of PD might be considered

as the total of speech defects in various speech characteristics.

Underscored by statistical decision-making theory, vali-

dated by a speech therapist, we propose that at least 78% of

PD subjects in the early stage of their disease indicate symp-

toms of vocal impairment, prior to intervention through med-

ical or speech therapy treatment.

IV. CONCLUSION

Our main finding is that 78% of early untreated PD sub-

jects show some form of vocal impairment. This study concen-

trates on three speech subsystems including phonation,

articulation, and prosody. It is important to note that the PD dis-

orders of the individual subsystems not only influence each

other but also frequently overlap. Disturbances of respiration

and phonation consequently reflect, in particular, disruptions in

speech prosody and partially articulation. Although a number

of researchers have found that the most salient features of PD

speech were related to phonatory impairment, with articulation

being the second most affected subsystem,10,26,27 in the case of

early untreated PD, prosody of speech appears to be the most

often damaged speech subsystem of the hypokinetic dysarthria.

The specific PD voice and speech defects were found to differ

individually in various characteristics (see Fig. 6). These results

also show that persons with early untreated PD need not to

have such a demonstrably impaired voice as to differ from the

speech production of the wider norm of healthy people.

We also find that from the 19 representative measures,

the variations of fundamental frequency in monolog and

emotional sentences contain very useful information in sepa-

rating HC from PD. The other representative measurements

achieve sufficient accuracy, with the sole exception of jitter.

In addition, the knowledge of incomplete vocal fold closure,

lack of lung pressure, and lower articulation accuracy as a

consequence of difficult articulation of fast syllable repetition

in the DDK task lead to the design of new articulation meas-

ures that are gaining significance for increasing performance.

Taking into account that the number of participants in this

study is 46, half of whom are patients with PD; we can there-

fore consider that the rate of participants is low. Despite this

circumstance, we can expect that the probability distributions

estimated by the Gaussian kernel density method in combina-

tion with the Wald task classification can ensure sufficient ac-

curacy of the results. This is because we do not assume that

there will be essential changes in the shape of distribution

curves in the case of increasing the number of subjects.

We believe the automatic measurement methods and

new measures of articulation will be useful in assessment of

vocal impairment and will have a potential for positive feed-

back in speech treatment. The classifier based on the Wald

task may also gain value in vocal impairment assessment

and could be helpful in additionally enlarging the number of

participants and efficiency measures. We also believe that

the selected measures should be useful in most countries

worldwide because of their independence from language.

It is necessary to stress that our patient sample is unique

and cannot be compared with that of other authors who have

published results from patients undergoing pharmaceutical

treatment.

Future research could further test these findings in prac-

tice, and the speech measurement methods could involve the

improvement of the individual voice in terms of treatment

and motivation for therapy.
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